精英家教网 > 高中数学 > 题目详情
14.4×5×6×…×n=(  )
A.A${\;}_{n}^{n-3}$B.A${\;}_{n}^{n-4}$C.A${\;}_{n}^{4}$D.(n-4)!

分析 利用排列数公式直接求解.

解答 解:在A中,${A}_{n}^{n-3}$=n×(n-1)×…×6×5×4=4×5×6×…×n,故A正确;
在B中,${A}_{n}^{n-4}$=n×(n-1)×…×6×5=5×6×…×n,故B错误;
在C中,${A}_{n}^{4}$=n×(n-1)×(n-2)×(n-3),故C错误;
在D中,(n-4)!=1×2×3×…×(n-1),故D错误.
故选:A.

点评 本题考查排列数公式、组合数公式等基础知识,考查推理论证能力、运算求解能力,考查化归与转化思想、函数与方程思想,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

4.已知抛物线C:x2=2py(p>0)的焦点为F,A为C上异于原点的任意一点,点A到x轴的距离等于|AF|-1.
(1)求抛物线C的方程;
(2)直线AF与C交于另一点B,抛物线C分别在点A,B处的切线交于点P,D为y轴正半轴上一点,直线AD与C交于另一点E,且有|FA|=|FD|,N是线段AE的靠近点A的四等分点.
(i)证明点P在△NAB的外接圆上;
(ii)△NAB的外接圆周长是否存在最小值?若存在,请求出最小值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.现有7名学科竞赛优胜者,其中语文学科是A1,A2,数学学科是B1,B2,英语学科是C1,C2,物理学科是D1,从竞赛优胜者中选出3名组成一个代表队,要求每个学科至多选出1名.
(1)求B1被选中的概率;
(2)求代表队中有物理优胜者的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.设全集U=R,集合M={x||x-$\frac{1}{2}$|$≤\frac{5}{2}$},P={x|-1≤x≤4},则(∁UM)∩P等于(  )
A.{x|-4≤x≤-2}B.{x|-1≤x≤3}C.{x|3<x≤4}D.{x|3≤x≤4}

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知双曲线$C:\frac{x^2}{a^2}-\frac{y^2}{b^2}=1(a>0,b>0)$,过其左焦点F作斜率为$\frac{1}{2}$的直线与双曲线的两条渐近线的交点分别为A、B,若$\overrightarrow{FA}=\frac{1}{2}\overrightarrow{AB}$,则双曲线的两条渐近线方程为(  )
A.$y=±\frac{1}{3}x$B.$y=±(\sqrt{2}-1)x$C.y=±xD.$y=±\frac{1}{4}x$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知函数f(x)=ex+mcosx-x.
(1)求曲线y=f(x)在点A(0,f(0))处的切线的斜率;
(2)当m=0时,求函数的f(x)单调区间和极值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.在复数集C={a+bi|a,b∈R}中的两个数2+bi与a-3i相等,则实数a,b的值分别为(  )
A.2,3B.2,-3C.-2,3D.-2,-3

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.设x,y满足约束条件$\left\{\begin{array}{l}{x-y-2≥0}\\{x-5≤0}\\{y+2≥0}\end{array}\right.$,则z=x2+y2的最小值与最大值分别为(  )
A.$\sqrt{2}$,$\sqrt{34}$B.2,$\sqrt{34}$C.4,34D.2,34

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.正数a,b满足等式2a+3b=6,则$\frac{2}{a}+\frac{3}{b}$的最小值为(  )
A.$\frac{25}{6}$B.$\frac{8}{3}$C.$\frac{11}{3}$D.4

查看答案和解析>>

同步练习册答案