精英家教网 > 高中数学 > 题目详情
2.下列4个命题:
①“若a、G、b成等比数列,则G2=ab”的逆命题;
②“如果x2+x-6≥0,则x>2”的否命题;
③在△ABC中,“若A>B”则“sinA>sinB”的逆否命题;
④当0≤α≤π时,若8x2-(8sinα)x+cos2α≥0对?x∈R恒成立,则α的取值范围是0≤α≤$\frac{π}{6}$.
其中真命题的序号是②③.

分析 由a=G=b=0,则a、G、b不成等比数列,即可判断①;
写出命题的否命题,由二次不等式的解法,即可判断②;
运用三角形的边角关系和正弦定理,即可判断③;
由二次不等式恒成立可得判别式不大于0,解不等式,结合二倍角公式和余弦函数的图象,即可判断④.

解答 解:①“若a、G、b成等比数列,则G2=ab”的逆命题为“若G2=ab,则a、G、b成等比数列”,
不正确,比如a=G=b=0,则a、G、b不成等比数列,故①错;
②“如果x2+x-6≥0,则x>2”的否命题为“②“如果x2+x-6<0,则x≤2”的否命题”,
由x2+x-6<0,可得-3<x<2,推得x≤2,故②对;
③在△ABC中,“若A>B”?“a>b”?“2RsinA>2RsinB”?“sinA>sinB”(R为外接圆的半径)
则其逆否命题正确,故③对;
④当0≤α≤π时,若8x2-(8sinα)x+cos2α≥0对?x∈R恒成立,即有△=64sin2α-32cos2α≤0,
即有1-2cos2α≤0,即为cos2α≥$\frac{1}{2}$,可得0≤2α≤$\frac{π}{3}$或$\frac{5π}{3}$≤2α≤2π,
解得0≤α≤$\frac{π}{6}$或$\frac{5π}{6}$≤α≤π,故④错.
故答案为:②③.

点评 本题考查命题的真假判断,主要考查等比数列中项的定义和性质,四种命题的判断和二次不等式恒成立问题的解法,考查判断和推理能力,属于中档题和易错题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

12.双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{4}$=1(a>0)的一个焦点与抛物线y2=4$\sqrt{5}$x的焦点重合,则双曲线的渐近方程是(  )
A.y=$±\frac{1}{4}$xB.y=$±\frac{1}{2}$xC.y=±2xD.y=±4x

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.如果角θ的终边经过点($\frac{\sqrt{5}}{5}$,$\frac{-2\sqrt{5}}{5}$),则cosθ=$\frac{\sqrt{5}}{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.△ABC三个内角A,B,C的对边分别为a,b,c,若a=3,b=5,c=7,则角C的大小为$\frac{2π}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知函数f(x)=sin(ωx+$\frac{π}{3}$)(ω>0)的最小正周期为π,将y=f(x)的图象上所有点的横坐标缩短为原来的$\frac{1}{2}$(纵坐标不变),再把所得的图象向右平移φ个单位长度,得到偶函数y=g(x)的图象,则φ的值可能是(  )
A.$\frac{π}{8}$B.$\frac{5π}{24}$C.$\frac{3π}{4}$D.$\frac{15π}{24}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的左、右焦点分别为F1、F2,过右焦点F2且与x轴垂直的直线与双曲线两条渐近线分别交于A,B两点,若△ABF1为等腰直角三角形,且|AB|=4$\sqrt{5}$,P(x,y)在双曲线上,M($\sqrt{5}$,$\sqrt{5}$),则|PM|+|PF2|的最小值为(  )
A.$\sqrt{5}$-1B.2C.2$\sqrt{5}$-2D.3

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.若x,y满足约束条件$\left\{\begin{array}{l}{x-y+1≥0}\\{x-2y≤0}\\{x+2y-2≤0}\end{array}\right.$,则z=2x+y的最大值为(  )
A.-5B.1C.$\frac{5}{2}$D.3

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知焦点在 x 轴上的椭圆$\frac{x^2}{m}$+$\frac{y^2}{3}$=1的离心率为$\frac{1}{2}$,则 m=(  )
A.6B.$\sqrt{6}$C.4D.2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知函数f(x)=ax+$\frac{b}{x}+c({a>0}),g(x)=lnx$,其中函数f(x)的图象在点(1,f(1))处的切线方程为y=x-1.
(1)若a=$\frac{1}{2}$,求函数f(x)的解析式;
(2)若f(x)≥g(x)在[1,+∞)上恒成立,求实数a的取值范围;
(3)证明:1+$\frac{1}{2}+\frac{1}{3}+…+\frac{1}{n}>ln({n+1})+\frac{n}{{2({n+1})}}({n≥1})$.

查看答案和解析>>

同步练习册答案