| A. | -5 | B. | 1 | C. | $\frac{5}{2}$ | D. | 3 |
分析 作出不等式组对应的平面区域,利用目标函数的几何意义,即可求最大值.
解答
解:作出不等式组对应的平面区域如图:(阴影部分),
由z=2x+y得y=-2x+z,
平移直线y=-2x+z,
由图象可知当直线y=-2x+z经过点A时,直线y=-2x+z的截距最大,
此时z最大.
由,解得$\left\{\begin{array}{l}{x-2y=0}\\{x+2y-2=0}\end{array}\right.$,解得A(1,$\frac{1}{2}$),
代入目标函数z=2x+y得z=2×1+$\frac{1}{2}$=$\frac{5}{2}$.
即目标函数z=2x+y的最大值为$\frac{5}{2}$.
故选:C.
点评 本题主要考查线性规划的应用,利用目标函数的几何意义,结合数形结合的数学思想是解决此类问题的基本方法.
科目:高中数学 来源: 题型:选择题
| A. | $\frac{25}{6}$ | B. | $\frac{8}{3}$ | C. | $\frac{11}{3}$ | D. | 4 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{1}{5}$ | B. | $\frac{\sqrt{5}}{5}$ | C. | $\frac{2\sqrt{5}}{5}$ | D. | $\sqrt{5}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | {an}中a7最大 | B. | {an}中a3或a4最大 | C. | 当n≥8时,an<0 | D. | 一定有S3=S11 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (9,25) | B. | (3,7) | C. | (9,49) | D. | (13,49) |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | a∈(0,3) | B. | a∈(-∞,3] | C. | a∈(3,+∞) | D. | a∈[3,+∞) |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com