精英家教网 > 高中数学 > 题目详情
19.已知{an}是等差数列,Sn为其前n项和,若a6=5,S4=12a4,则公差d的值为$\frac{5}{2}$.

分析 利用等差数列的通项公式、前n项和公式列出方程组,由此能求出公差d的值.

解答 解:∵{an}是等差数列,Sn为其前n项和,a6=5,S4=12a4
∴$\left\{\begin{array}{l}{{a}_{1}+5d=5}\\{4{a}_{1}+\frac{4×3}{2}d=12({a}_{1}+3d)}\end{array}\right.$,
解得${a}_{1}=-\frac{15}{2}$,d=$\frac{5}{2}$.
∴公差d的值为$\frac{5}{2}$.
故答案为:$\frac{5}{2}$.

点评 本题考查等差数列的公差的求法,考查等差数列等基础知识,考查推理论证能力、运算求解能力,考查化归与转化思想、函数与方程思想,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

9.下列说法正确的是(  )
A.极坐标系中方程ρ2-4ρcosθ=0和ρ-4cosθ=0表示的是同一曲线
B.$|{a-b}|+\frac{1}{a-b}≥2$
C.不等式|a+b|≥|a|-|b|等号成立的条件为ab≤0
D.在极坐标系中方程$({ρ-2cosθ})({θ-\frac{π}{3}})=0(ρ≥0)$表示的圆和一条直线.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.△ABC三个内角A,B,C的对边分别为a,b,c,若a=3,b=5,c=7,则角C的大小为$\frac{2π}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的左、右焦点分别为F1、F2,过右焦点F2且与x轴垂直的直线与双曲线两条渐近线分别交于A,B两点,若△ABF1为等腰直角三角形,且|AB|=4$\sqrt{5}$,P(x,y)在双曲线上,M($\sqrt{5}$,$\sqrt{5}$),则|PM|+|PF2|的最小值为(  )
A.$\sqrt{5}$-1B.2C.2$\sqrt{5}$-2D.3

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.若x,y满足约束条件$\left\{\begin{array}{l}{x-y+1≥0}\\{x-2y≤0}\\{x+2y-2≤0}\end{array}\right.$,则z=2x+y的最大值为(  )
A.-5B.1C.$\frac{5}{2}$D.3

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.函数f(x)=x2-ln(2x)的单调增区间是(  )
A.(0,$\frac{\sqrt{2}}{2}$]B.[$\frac{\sqrt{2}}{2}$,+∞]C.(-∞,-$\frac{\sqrt{2}}{2}$],(0,$\frac{\sqrt{2}}{2}$)D.[-$\frac{\sqrt{2}}{2}$,0),(0,$\frac{\sqrt{2}}{2}$]

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知焦点在 x 轴上的椭圆$\frac{x^2}{m}$+$\frac{y^2}{3}$=1的离心率为$\frac{1}{2}$,则 m=(  )
A.6B.$\sqrt{6}$C.4D.2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.若排列数${P}_{6}^{m}$=6×5×4,则m=3.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.某学校实行自主招生,参加自主招生的学生从8个试题中随机挑选出4个进行作答,至少答对3个才能通过初试.已知甲、乙两人参加初试,在这8个试题中甲能答对6个,乙能答对每个试题的概率为$\frac{3}{4}$,且甲、乙两人是否答对每个试题互不影响.
(Ⅰ)求甲通过自主招生初试的概率;
(Ⅱ)试通过概率计算,分析甲、乙两人谁通过自主招生初试的可能性更大;
(Ⅲ)记甲答对试题的个数为X,求X的分布列及数学期望.

查看答案和解析>>

同步练习册答案