精英家教网 > 高中数学 > 题目详情
10.△ABC三个内角A,B,C的对边分别为a,b,c,若a=3,b=5,c=7,则角C的大小为$\frac{2π}{3}$.

分析 由已知利用余弦定理可求cosC的值,结合C的范围,由特殊角的三角函数值即可得解.

解答 解:∵a=3,b=5,c=7,
∴cosC=$\frac{{a}^{2}+{b}^{2}-{c}^{2}}{2ab}$=$\frac{{3}^{2}+{5}^{2}-{7}^{2}}{2×3×5}$=-$\frac{1}{2}$,
∵C∈(0,π),
∴C=$\frac{2π}{3}$.
故答案为:$\frac{2π}{3}$.

点评 本题主要考查了余弦定理,特殊角的三角函数值在解三角形中的应用,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

20.已知函数f(x)=x3+ax2+bx在x=-$\frac{2}{3}$与x=1处都取得极值.
(1)求a,b的值;
(2)求曲线y=f(x)在x=2处的切线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知实数a>0,b>0,若$\sqrt{2}$是4a与2b的等比中项,则下列不对的说法是(  )
A.$0<a<\frac{1}{2}$B.0<b<1C.$\frac{1}{2}<a+b<1$D.$\frac{3}{2}<3a+b<2$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.数列{an}满足:a1=1,an+1+(-1)nan=2n-1.
(1)求a2,a4,a6
(2)设bn=a2n,求数列{bn}的通项公式;
(3)设Sn为数列{an}的前n项和,求S2018

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.点P(1,2)到直线x-2y+5=0的距离为(  )
A.$\frac{1}{5}$B.$\frac{\sqrt{5}}{5}$C.$\frac{2\sqrt{5}}{5}$D.$\sqrt{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知△ABC的三内角A、B、C的对边分别为a,b,c,且csinA=$\sqrt{3}$acosC.
(1)求角C的大小;
(2)若c=2,求△ABC的面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.下列4个命题:
①“若a、G、b成等比数列,则G2=ab”的逆命题;
②“如果x2+x-6≥0,则x>2”的否命题;
③在△ABC中,“若A>B”则“sinA>sinB”的逆否命题;
④当0≤α≤π时,若8x2-(8sinα)x+cos2α≥0对?x∈R恒成立,则α的取值范围是0≤α≤$\frac{π}{6}$.
其中真命题的序号是②③.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.已知{an}是等差数列,Sn为其前n项和,若a6=5,S4=12a4,则公差d的值为$\frac{5}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.在极坐标系中,曲线ρ=4sin(θ-$\frac{π}{4}$)(ρ∈R)关于(  )
A.直线θ=$\frac{π}{3}$成轴对称B.直线θ=$\frac{3π}{4}$成轴对称
C.点(2,$\frac{π}{3}$)成中心对称D.极点成中心对称

查看答案和解析>>

同步练习册答案