| A. | $\sqrt{5}$-1 | B. | 2 | C. | 2$\sqrt{5}$-2 | D. | 3 |
分析 设出双曲线的焦点和渐近线方程,令x=c,解得y,可得|AB|,由等腰直角三角形的性质和双曲线的基本量的关系,解得a,b,c,可得双曲线的方程,讨论P在左支和右支上,运用双曲线的定义,结合三点共线的性质,结合两点的距离公式,即可得到所求最小值.
解答
解:双曲线的左、右焦点分别为F1(-c,0),F2(c,0),
渐近线方程为y=±$\frac{b}{a}$x,
令x=c,解得y=±$\frac{bc}{a}$,
可得|AB|=$\frac{2bc}{a}$,
若△ABF1为等腰直角三角形,且|AB|=4$\sqrt{5}$,
即有$\frac{2bc}{a}$=4$\sqrt{5}$,2c=2$\sqrt{5}$,c2=a2+b2,
解得a=1,b=2,c=$\sqrt{5}$,
即有双曲线的方程为x2-$\frac{{y}^{2}}{4}$=1,
由题意可知若P在左支上,由双曲线的定义可得|PF2|=2a+|PF1|,
|PM|+|PF2|=|PM|+|PF1|+2a≥|MF1|+2=$\sqrt{(\sqrt{5}+\sqrt{5})^{2}+(\sqrt{5})^{2}}$+2=7,
当且仅当M,P,F1共线时,取得最小值7;
若P在右支上,由双曲线的定义可得|PF2|=|PF1|-2a,
|PM|+|PF2|=|PM|+|PF1|-2a≥|MF1|-2=$\sqrt{(\sqrt{5}+\sqrt{5})^{2}+(\sqrt{5})^{2}}$-2=3,
当且仅当M,P,F1共线时,取得最小值3.
综上可得,所求最小值为3.
故选:D.
点评 本题考查双曲线的定义、方程和性质,主要是渐近线方程的运用,以及定义法,考查转化思想和三点共线取得最小值的性质,考查运算能力,属于中档题.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 对立事件 | B. | 互斥但不对立事件 | ||
| C. | 不可能事件 | D. | 必然事件 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com