精英家教网 > 高中数学 > 题目详情
12.把黑、红、白各1张纸牌分给甲、乙、丙三人,则事件“甲分得红牌”与“乙分得红牌”是(  )
A.对立事件B.互斥但不对立事件
C.不可能事件D.必然事件

分析 事件“甲分得红牌”与“乙分得红牌”不能同时发生,但能同时不发生,从而得到事件“甲分得红牌”与“乙分得红牌”是互斥但不对立事件.

解答 解:把黑、红、白各1张纸牌分给甲、乙、丙三人,
事件“甲分得红牌”与“乙分得红牌”不能同时发生,但能同时不发生,
∴事件“甲分得红牌”与“乙分得红牌”是互斥但不对立事件.
故选:B.

点评 本题考查对立事件、互斥事件的判断,是基础题,解题时要认真审题,注意对立事件、互斥事件的定义的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

2.公元前300年欧几里得提出一种算法,该算法程序框图如图所示.若输入m=98,n=63,则输出的m=(  )
A.7B.28C.17D.35

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知复数z=(m2-3m+2)+(2m2-3m-2)i.
(Ⅰ)当实数m取什么值时,复数z是:①实数;②虚数;③纯虚数;
(Ⅱ)在复平面内,若复数z所对应的点在第四象限,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.在棱长为2正方体ABCD-A1B1C1D1中,E、F分别是CC1、A1D1中点,M、N分别为线段CD、AD上的动点,若EN⊥FM,则线段MN长度的最小值是(  )
A.$\frac{2\sqrt{5}}{5}$B.$\frac{\sqrt{2}}{2}$C.$\sqrt{2}$D.1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的左、右焦点分别为F1、F2,过右焦点F2且与x轴垂直的直线与双曲线两条渐近线分别交于A,B两点,若△ABF1为等腰直角三角形,且|AB|=4$\sqrt{5}$,P(x,y)在双曲线上,M($\sqrt{5}$,$\sqrt{5}$),则|PM|+|PF2|的最小值为(  )
A.$\sqrt{5}$-1B.2C.2$\sqrt{5}$-2D.3

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.设数列{an}的前n项和为Sn,若a1+a2=5,an+1=3Sn+1(n∈N*),则S5等于(  )
A.85B.255C.341D.1023

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.函数f(x)=x2-ln(2x)的单调增区间是(  )
A.(0,$\frac{\sqrt{2}}{2}$]B.[$\frac{\sqrt{2}}{2}$,+∞]C.(-∞,-$\frac{\sqrt{2}}{2}$],(0,$\frac{\sqrt{2}}{2}$)D.[-$\frac{\sqrt{2}}{2}$,0),(0,$\frac{\sqrt{2}}{2}$]

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.命题“存在一个无理数,它的平方是有理数”的否定是(  )
A.存在一个有理数,它的平方是有理数
B.存在一个无理数,它的平方不是有理数
C.任意一个无理数,它的平方不是有理数
D.任意一个有理数,它的平方是有理数

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.将由直线y=x2与直线x=1以及x轴围成的封闭图形绕x轴旋转一周形成的几何体的体积为$\frac{π}{5}$.

查看答案和解析>>

同步练习册答案