精英家教网 > 高中数学 > 题目详情
1.命题“存在一个无理数,它的平方是有理数”的否定是(  )
A.存在一个有理数,它的平方是有理数
B.存在一个无理数,它的平方不是有理数
C.任意一个无理数,它的平方不是有理数
D.任意一个有理数,它的平方是有理数

分析 特称命题的否定为全称命题,注意量词的变化和否定词的变化.

解答 解:由特称命题的否定为全称命题,可得
命题“存在一个无理数,它的平方是有理数”的否定是
“任意一个无理数,它的平方不是有理数”,
故选:C.

点评 本题考查命题的否定,注意特称命题的否定为全称命题,油机量词的变化,考查转化能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

11.已知△ABC的三边长成等差数列,公差为2,且最大角的正弦值为$\frac{\sqrt{3}}{2}$,则这个三角形的周长是(  )
A.9B.12C.15D.18

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.把黑、红、白各1张纸牌分给甲、乙、丙三人,则事件“甲分得红牌”与“乙分得红牌”是(  )
A.对立事件B.互斥但不对立事件
C.不可能事件D.必然事件

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.已知α,β∈(-$\frac{π}{2}$,$\frac{π}{2}$),tanα,tanβ是二次方程x2+$\sqrt{2017}$x+1+$\sqrt{2017}$=0的两实根,则α+β=-$\frac{3π}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知数列{an},{bn}满足a1=2,b1=4,且 2bn=an+an +1,an+12=bnbn+1
(Ⅰ)求 a 2,a3,a4 及b2,b3,b4
(Ⅱ)猜想{an },{bn} 的通项公式,并证明你的结论;
(Ⅲ)证明:对所有的 n∈N*,$\frac{{a}_{1}}{{b}_{1}}$•$\frac{{a}_{3}}{{b}_{3}}$•…•$\frac{{a}_{2n-1}}{{b}_{2n-1}}$<$\sqrt{\frac{{b}_{n}-{a}_{n}}{{b}_{n}+{a}_{n}}}$<$\sqrt{2}$sin$\frac{1}{{\sqrt{2\sqrt{b_n}-1}}}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.同时抛掷两枚质地均匀的硬币,当至少有一枚硬币正面向上时,就说这次试验成功,则在5次试验中成功次数X的方差为$\frac{15}{16}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.根据预测,某地第n(n∈N*)个月共享单车的投放量和损失量分别为an和bn(单位:辆),其中an=$\left\{\begin{array}{l}5{n^4}+15{,_{\;}}1≤n≤3\\-10n+470{,_{\;}}n≥4\end{array}$,bn=n+5,第n个月底的共享单车的保有量是前n个月的累计投放量与累计损失量的差.
(1)求该地区第4个月底的共享单车的保有量;
(2)已知该地共享单车停放点第n个月底的单车容纳量Sn=-4(n-46)2+8800(单位:辆).设在某月底,共享单车保有量达到最大,问该保有量是否超出了此时停放点的单车容纳量?

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知复数z=$\frac{\sqrt{3}+i}{2i}$,$\overline{z}$是z的共轭复数,则z•$\overline{z}$=(  )
A.1B.2C.$\frac{1}{4}$D.$\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知$z=\frac{5i}{3+4i}$,则|z|=(  )
A.1B.3C.5D.7

查看答案和解析>>

同步练习册答案