分析 利用韦达定理求得tan(α+β)的值,再根据α+β的范围,求得α+β的值.
解答 解:∵α,β∈(-$\frac{π}{2}$,$\frac{π}{2}$),tanα,tanβ是二次方程x2+$\sqrt{2017}$x+1+$\sqrt{2017}$=0的两实根,
∴tanα+tanβ=-$\sqrt{2017}$,tanα•tanβ=$\sqrt{2017}$+1,
∴tan(α+β)=$\frac{tanα+tanβ}{1-tanα•tanβ}$=$\frac{-\sqrt{2017}}{1-(\sqrt{2017}+1)}$=1,
结合α+β∈(-π,π),∴α+β=$\frac{π}{4}$,或α+β=-$\frac{3π}{4}$,
当α+β=$\frac{π}{4}$时,不满足tanα+tanβ=-$\sqrt{2017}$,故舍去,检验α+β=-$\frac{3π}{4}$,满足条件.
综上可得,α+β=-$\frac{3π}{4}$,
故答案为:-$\frac{3π}{4}$.
点评 本题主要考查韦达定理,根据三角函数的值求角,属于基础题.
科目:高中数学 来源: 题型:选择题
| A. | 锐角三角形 | B. | 直角三角形 | C. | 钝角三角形 | D. | 非钝角三角形 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{2\sqrt{5}}{5}$ | B. | $\frac{\sqrt{2}}{2}$ | C. | $\sqrt{2}$ | D. | 1 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 85 | B. | 255 | C. | 341 | D. | 1023 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (0,$\frac{\sqrt{2}}{2}$] | B. | [$\frac{\sqrt{2}}{2}$,+∞] | C. | (-∞,-$\frac{\sqrt{2}}{2}$],(0,$\frac{\sqrt{2}}{2}$) | D. | [-$\frac{\sqrt{2}}{2}$,0),(0,$\frac{\sqrt{2}}{2}$] |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 存在一个有理数,它的平方是有理数 | |
| B. | 存在一个无理数,它的平方不是有理数 | |
| C. | 任意一个无理数,它的平方不是有理数 | |
| D. | 任意一个有理数,它的平方是有理数 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com