精英家教网 > 高中数学 > 题目详情
9.已知α,β∈(-$\frac{π}{2}$,$\frac{π}{2}$),tanα,tanβ是二次方程x2+$\sqrt{2017}$x+1+$\sqrt{2017}$=0的两实根,则α+β=-$\frac{3π}{4}$.

分析 利用韦达定理求得tan(α+β)的值,再根据α+β的范围,求得α+β的值.

解答 解:∵α,β∈(-$\frac{π}{2}$,$\frac{π}{2}$),tanα,tanβ是二次方程x2+$\sqrt{2017}$x+1+$\sqrt{2017}$=0的两实根,
∴tanα+tanβ=-$\sqrt{2017}$,tanα•tanβ=$\sqrt{2017}$+1,
∴tan(α+β)=$\frac{tanα+tanβ}{1-tanα•tanβ}$=$\frac{-\sqrt{2017}}{1-(\sqrt{2017}+1)}$=1,
结合α+β∈(-π,π),∴α+β=$\frac{π}{4}$,或α+β=-$\frac{3π}{4}$,
当α+β=$\frac{π}{4}$时,不满足tanα+tanβ=-$\sqrt{2017}$,故舍去,检验α+β=-$\frac{3π}{4}$,满足条件.
综上可得,α+β=-$\frac{3π}{4}$,
故答案为:-$\frac{3π}{4}$.

点评 本题主要考查韦达定理,根据三角函数的值求角,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

19.在△ABC中,角A、B、C所对应的边分别为a,b,c,若$\frac{c}{b}$<cosA,则△ABC为(  )
A.锐角三角形B.直角三角形C.钝角三角形D.非钝角三角形

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.在棱长为2正方体ABCD-A1B1C1D1中,E、F分别是CC1、A1D1中点,M、N分别为线段CD、AD上的动点,若EN⊥FM,则线段MN长度的最小值是(  )
A.$\frac{2\sqrt{5}}{5}$B.$\frac{\sqrt{2}}{2}$C.$\sqrt{2}$D.1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.设数列{an}的前n项和为Sn,若a1+a2=5,an+1=3Sn+1(n∈N*),则S5等于(  )
A.85B.255C.341D.1023

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.函数f(x)=x2-ln(2x)的单调增区间是(  )
A.(0,$\frac{\sqrt{2}}{2}$]B.[$\frac{\sqrt{2}}{2}$,+∞]C.(-∞,-$\frac{\sqrt{2}}{2}$],(0,$\frac{\sqrt{2}}{2}$)D.[-$\frac{\sqrt{2}}{2}$,0),(0,$\frac{\sqrt{2}}{2}$]

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.过点 M (0,1)且斜率为 1 的直线 l 与双曲线 C:$\frac{x^2}{a^2}-\frac{y^2}{b^2}$=1( a>0,b>0)的两渐近线交于点 A,B,
且$\overline{BM}$=2$\overline{AM}$,则直线 l 的方程为y=x+1;如果双曲线的焦距为 2$\sqrt{10}$,则 b 的值为1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.命题“存在一个无理数,它的平方是有理数”的否定是(  )
A.存在一个有理数,它的平方是有理数
B.存在一个无理数,它的平方不是有理数
C.任意一个无理数,它的平方不是有理数
D.任意一个有理数,它的平方是有理数

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知函数f(x)=mln(x+1),g(x)=$\frac{x}{x+1}({x>-1})$.
(1)当m=2时,求函数y=f(x)在点(0,f(0))处的切线方程.
(2)讨论函数F(x)=f(x)-g(x)在(-1,+∞)上的单调性;
(3)若y=f(x)与y=g(x)的图象有且仅有一条公切线,试求实数m的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.已知正实数x,y满足2x+y=1,则xy的最大值为$\frac{1}{8}$.

查看答案和解析>>

同步练习册答案