精英家教网 > 高中数学 > 题目详情
14.过点 M (0,1)且斜率为 1 的直线 l 与双曲线 C:$\frac{x^2}{a^2}-\frac{y^2}{b^2}$=1( a>0,b>0)的两渐近线交于点 A,B,
且$\overline{BM}$=2$\overline{AM}$,则直线 l 的方程为y=x+1;如果双曲线的焦距为 2$\sqrt{10}$,则 b 的值为1.

分析 运用斜截式方程可得直线l的方程,设A(x1,y1).B(x2,y2),由$\overline{BM}$=2$\overline{AM}$,可得点A、B的横坐标之间的关系; 再联立直线l的方程与双曲线渐近线方程,解方程可得x1,x2,化简整理可得a=3b,再由a,b,c关系,解方程可得b的值.

解答 解:设A(x1,y1).B(x2,y2),
由$\overline{BM}$=2$\overline{AM}$,得x2=2x1.①,
由题得:直线方程为y=x+1,
$\frac{x^2}{a^2}-\frac{y^2}{b^2}$=1的渐近线方程为y=±$\frac{b}{a}$x,
联立直线l方程和渐近线方程,解得x1=-$\frac{a}{a+b}$,
x2=$\frac{a}{b-a}$,
即有-$\frac{2a}{a+b}$=$\frac{a}{b-a}$,
化为a=3b,
由双曲线的焦距为 2$\sqrt{10}$,
可得a2+b2=c2=10,
即有10b2=10,
解得b=1.
故答案为:y=x+1,1.

点评 本题主要考查双曲线的方程和性质,主要是渐近线方程和基本量之间的关系,同时考查向量共线的坐标表示,考查化简整理的运算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

4.已知点(3,1)和点(-4.6)在直线3x-2y+m=0的两侧,则m的取值范围是(  )
A.( 7,24)B.(-7,24)C.(-24,7 )D.(-7,-24 )

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.如图,在四棱锥P-ABCD中,侧面PAB与底面ABCD垂直,△PAB为正三角形,AB⊥AD,CD⊥AD,点E、M分别为线段BC、AD的中点,F、G分别为线段PA、AE上一点,且AB=AD=2,PF=2FA.
(1)当AG=2GE时,求证:FG∥平面PCD;
(2)试问:直线CD上是否存在一点Q,使得平面PAB与平面PMQ所成锐二面角的大小为30°,若存在,求DQ的长;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知数列{an}的前n项和Sn满足Sn=$\frac{3}{2}$n2+$\frac{7}{2}$n(n∈N*),数列{bn}是首项为4的正项等比数列,且2b2,b3-3,b2+2成等差数列.
(Ⅰ)求数列{an},{bn}的通项公式;
(Ⅱ)令cn=an•bn(n∈N*),求数列{cn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.已知α,β∈(-$\frac{π}{2}$,$\frac{π}{2}$),tanα,tanβ是二次方程x2+$\sqrt{2017}$x+1+$\sqrt{2017}$=0的两实根,则α+β=-$\frac{3π}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.某海滨浴场的海浪高度y(米)是时间t(0≤t≤24),单位:小时)的函数,记为y=f(x),下表是某日各时的浪高数据:
t时03691215182124
y米1.51.00.50.981.51.010.50.991.5
经长期观察,y=f(t)的曲线可以近似地看出是函数y=Acos(ωt)+k(A>0)的曲线.浴场规定:当海浪高度高于1米时才对冲浪爱好者开放,根据以上数据,当天上午8:00时至晚上20:00时之间可供冲浪爱好者冲浪的时间约为多少时?(  )
A.10小时B.8小时C.6小时D.4小时

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.同时抛掷两枚质地均匀的硬币,当至少有一枚硬币正面向上时,就说这次试验成功,则在5次试验中成功次数X的方差为$\frac{15}{16}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.已知直线l的参数方程$\left\{\begin{array}{l}{x=t}\\{y=1+2t}\end{array}\right.$(t为参数),若以原点O为极点,x轴的正半轴为极轴,建立极坐标系,圆C的极坐标方程为ρ=2$\sqrt{2}$sin(θ+$\frac{π}{4}$).则圆的直角坐标方程为(x-1)2+(y-1)2=2,直线l和圆C的位置关系为相交(填相交、相切、相离).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.如图,在三棱柱ABC-A1B1C1中,面ABB1A1为矩形,AB=1,AA1=$\sqrt{2}$,D为AA1的中点,BD与AB1交于点O,CO⊥面ABB1A1
(Ⅰ)证明:BC⊥AB1
(Ⅱ)若OC=OA,求二面角A-BC-B1的余弦值.

查看答案和解析>>

同步练习册答案