精英家教网 > 高中数学 > 题目详情
4.已知点(3,1)和点(-4.6)在直线3x-2y+m=0的两侧,则m的取值范围是(  )
A.( 7,24)B.(-7,24)C.(-24,7 )D.(-7,-24 )

分析 根据题意,若两点在直线两侧,则有(3×3-2×1+m)[3×(-4)-2×6+m]<0,解可得m的取值范围,即可得答案.

解答 解:因为点(3,1)和点(-4,6)在直线3x-2y+m=0的两侧,
所以,(3×3-2×1+m)[3×(-4)-2×6+m]<0,
即:(m+7)(m-24)<0,解得-7<m<24,
即m的取值范围为(-7,24)
故选:B.

点评 本题考查二元一次不等式与平面区域的问题,关键是得到关于m的不等式.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

14.已知点A(-2,3)在抛物线y2=2px的准线上,抛物线焦点为F,则直线AF的斜率为(  )
A.-$\frac{1}{2}$B.-$\frac{3}{4}$C.-1D.-$\frac{4}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知f(x)=$\frac{1}{2}$x2-6x+8lnx在[m,m+1]上不是单调函数,则实数m的取值范围是(  )
A.(1,2)B.(3,4)C.(1,2]∪[3,4)D.(1,2)∪(3,4)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.已知等比数列{an}满足a2a5=2a3,且${a_4},\frac{5}{4},2{a_7}$成等差数列,则a1•a2•…•an的值为2${\;}^{\frac{1}{2}n(9-n)}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.在△ABC中,角A、B、C所对应的边分别为a,b,c,若$\frac{c}{b}$<cosA,则△ABC为(  )
A.锐角三角形B.直角三角形C.钝角三角形D.非钝角三角形

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.在△ABC中,a,b,c分别是三外内角A、B、C的对边,a=1,b=$\sqrt{2}$,A=30°,则B=(  )
A.$\frac{π}{3}$B.$\frac{π}{3}$或$\frac{2π}{3}$C.$\frac{π}{4}$D.$\frac{π}{4}$或$\frac{3π}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.设等比数列{an}的公比为q,Tn是其前n项的乘积,若25(a1+a3)=1,a5=27a2,当Tn取得最小值时,n=6.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.如图,要测量河对岸A、B两点之间的距离,选取相距$\sqrt{3}$km的C、D两点,并测得∠ACB=75°.∠BCD=∠ADB=45°,∠ADC=30°,请利用所测数据计算A、B之间的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.过点 M (0,1)且斜率为 1 的直线 l 与双曲线 C:$\frac{x^2}{a^2}-\frac{y^2}{b^2}$=1( a>0,b>0)的两渐近线交于点 A,B,
且$\overline{BM}$=2$\overline{AM}$,则直线 l 的方程为y=x+1;如果双曲线的焦距为 2$\sqrt{10}$,则 b 的值为1.

查看答案和解析>>

同步练习册答案