| A. | 锐角三角形 | B. | 直角三角形 | C. | 钝角三角形 | D. | 非钝角三角形 |
分析 由已知结合正弦定理可得sinC<sinBcosA,利用三角形的内角和及诱导公式可得,sin(A+B)<sinBcosA整理可得sinAcosB+sinBcosA<0,从而有sinAcosB<0,结合三角形的性质可求.
解答 解:∵A是△ABC的一个内角,0<A<π,
∴sinA>0.
∵$\frac{c}{b}$<cosA,
由正弦定理可得,sinC<sinBcosA,
∴sin(A+B)<sinBcosA,
∴sinAcosB+sinBcosA<sinBcosA,
∴sinAcosB<0,又sinA>0,
∴cosB<0,即B为钝角.
故选:C.
点评 本题主要考查了正弦定理,三角形的内角和及诱导公式,两角和的正弦公式,属于基础题.
科目:高中数学 来源: 题型:选择题
| A. | 函数没有零点 | B. | 函数有一个零点 | ||
| C. | 函数有两个零点 | D. | 函数至多有一个零点 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | ( 7,24) | B. | (-7,24) | C. | (-24,7 ) | D. | (-7,-24 ) |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 9 | B. | 12 | C. | 15 | D. | 18 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 2 | B. | $\frac{7}{2}$ | C. | 4 | D. | 5 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com