分析 由向量的平方即为模的平方,可得$\overrightarrow{a}$•$\overrightarrow{b}$=-4,再由$\overrightarrow{b}$在$\overrightarrow{a}$方向上的投影为$\frac{\overrightarrow{a}•\overrightarrow{b}}{|\overrightarrow{a}|}$,计算即可得到所求值.
解答 解:向量$\overrightarrow{a}$,$\overrightarrow{b}$满足|$\overrightarrow{a}$|=1,$\overrightarrow{a}$•($\overrightarrow{a}$+$\overrightarrow{b}$)=-3,
可得$\overrightarrow{a}$2+$\overrightarrow{a}$•$\overrightarrow{b}$=1+$\overrightarrow{a}$•$\overrightarrow{b}$=-3,
即有$\overrightarrow{a}$•$\overrightarrow{b}$=-4,
则$\overrightarrow{b}$在$\overrightarrow{a}$方向上的投影为$\frac{\overrightarrow{a}•\overrightarrow{b}}{|\overrightarrow{a}|}$=$\frac{-4}{1}$=-4.
故答案为:-4.
点评 本题考查向量数量积的性质:向量的平方即为模的平方,考查向量投影的概念,以及运算能力,属于基础题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (1,2) | B. | (3,4) | C. | (1,2]∪[3,4) | D. | (1,2)∪(3,4) |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 锐角三角形 | B. | 直角三角形 | C. | 钝角三角形 | D. | 非钝角三角形 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 85 | B. | 255 | C. | 341 | D. | 1023 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com