精英家教网 > 高中数学 > 题目详情
8.[普通高中]已知两个等差数列{an}和{bn}的前n项和分别为An和Bn,且$\frac{{A}_{n}}{{B}_{n}}$=$\frac{5n+3}{n+3}$,则$\frac{{a}_{5}}{{b}_{5}}$的值为(  )
A.2B.$\frac{7}{2}$C.4D.5

分析 利用等差数列的通项公式、前n项和公式推导出$\frac{{a}_{5}}{{b}_{5}}$=$\frac{2{a}_{5}}{2{b}_{5}}=\frac{{a}_{1}+{a}_{9}}{{b}_{1}+{b}_{9}}$=$\frac{{A}_{9}}{{B}_{9}}$,由此能求出结果.

解答 解:∵两个等差数列{an}和{bn}的前n项和分别为An和Bn,且$\frac{{A}_{n}}{{B}_{n}}$=$\frac{5n+3}{n+3}$,
∴$\frac{{a}_{5}}{{b}_{5}}$=$\frac{2{a}_{5}}{2{b}_{5}}=\frac{{a}_{1}+{a}_{9}}{{b}_{1}+{b}_{9}}$=$\frac{\frac{9}{2}({a}_{1}+{a}_{9})}{\frac{9}{2}({b}_{1}+{b}_{9})}$=$\frac{{A}_{9}}{{B}_{9}}$=$\frac{5×9+3}{9+3}$=4.
故选:C.

点评 本题考查两个等差数列的第五项的比值的求法,考查等差数列等基础知识,考查推理论证能力、运算求解能力,考查化归与转化思想、函数与方程思想,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

18.在△ABC中,角A,B,C所对的边分别是a,b,c,BC边上的高与BC边长相等,则$\frac{b}{c}$+$\frac{c}{b}$$+\frac{{a}^{2}}{bc}$的最大值是2$\sqrt{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.在△ABC中,角A、B、C所对应的边分别为a,b,c,若$\frac{c}{b}$<cosA,则△ABC为(  )
A.锐角三角形B.直角三角形C.钝角三角形D.非钝角三角形

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.设等比数列{an}的公比为q,Tn是其前n项的乘积,若25(a1+a3)=1,a5=27a2,当Tn取得最小值时,n=6.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知复数z=(m2-3m+2)+(2m2-3m-2)i.
(Ⅰ)当实数m取什么值时,复数z是:①实数;②虚数;③纯虚数;
(Ⅱ)在复平面内,若复数z所对应的点在第四象限,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.如图,要测量河对岸A、B两点之间的距离,选取相距$\sqrt{3}$km的C、D两点,并测得∠ACB=75°.∠BCD=∠ADB=45°,∠ADC=30°,请利用所测数据计算A、B之间的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.在棱长为2正方体ABCD-A1B1C1D1中,E、F分别是CC1、A1D1中点,M、N分别为线段CD、AD上的动点,若EN⊥FM,则线段MN长度的最小值是(  )
A.$\frac{2\sqrt{5}}{5}$B.$\frac{\sqrt{2}}{2}$C.$\sqrt{2}$D.1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.设数列{an}的前n项和为Sn,若a1+a2=5,an+1=3Sn+1(n∈N*),则S5等于(  )
A.85B.255C.341D.1023

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知函数f(x)=mln(x+1),g(x)=$\frac{x}{x+1}({x>-1})$.
(1)当m=2时,求函数y=f(x)在点(0,f(0))处的切线方程.
(2)讨论函数F(x)=f(x)-g(x)在(-1,+∞)上的单调性;
(3)若y=f(x)与y=g(x)的图象有且仅有一条公切线,试求实数m的值.

查看答案和解析>>

同步练习册答案