| A. | (9,25) | B. | (3,7) | C. | (9,49) | D. | (13,49) |
分析 根据对于任意的x都有f(-x)+f(x)=0恒成立,不等式可化为f(m2-6m+21)<f(-n2+8n),利用f(x)是定义在R上的增函数,可得(m-3)2+(n-4)2<4,确定(m-3)2+(n-4)2=4内的点到原点距离的取值范围,利用m2+n2 表示(m-3)2+(n-4)2=4内的点到原点距离的平方,即可求得m2+n2 的取值范围.
解答 解:∵对于任意的x都有f(-x)+f(x)=0恒成立
∴f(-x)=-f(x)
∵f(m2-6m+21)+f(n2-8n)<0,
∴f(m2-6m+21)<-f(n2-8n)=f(-n2+8n),
∵f(x)是定义在R上的增函数,
∴m2-6m+21<-n2+8n
∴(m-3)2+(n-4)2<4
∵(m-3)2+(n-4)2=4的圆心坐标为:(3,4),半径为2,
∴(m-3)2+(n-4)2=4内的点到原点距离的取值范围为(5-2,5+2),即(3,7)
∵m2+n2 表示(m-3)2+(n-4)2=4内的点到原点距离的平方
∴m2+n2 的取值范围是(9,49);
故选:C.
点评 本题考查函数的奇偶性与单调性,涉及圆的标准方程以及点与圆的位置关系,解题的关键是确定圆内的点到原点距离的取值范围.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | -5 | B. | 1 | C. | $\frac{5}{2}$ | D. | 3 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 6 | B. | $\sqrt{6}$ | C. | 4 | D. | 2 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 2个球都是白球的概率 | B. | 2个球中恰好有1个是白球的概率 | ||
| C. | 2个球都不是白球的概率 | D. | 2个球不都是红球的概率 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 1 | B. | 2 | C. | $\frac{1}{2}$ | D. | 3 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | ${a_n}={2^{2n-3}}$ | B. | ${a_n}={2^{5-2n}}$ | ||
| C. | ${a_n}={2^{2n-5}}$ | D. | ${a_n}={2^{2n-3}}$或${a_n}={2^{5-2n}}$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com