精英家教网 > 高中数学 > 题目详情
18.甲口袋内装有大小相等的8个红球和4个白球,乙口袋内装有大小相等的9个红球和3个白球,从两个口袋内各摸出1个球,那么$\frac{5}{12}$等于(  )
A.2个球都是白球的概率B.2个球中恰好有1个是白球的概率
C.2个球都不是白球的概率D.2个球不都是红球的概率

分析 由题意利用相互独立事件的概率乘法公式,分别求得各个选项中事件的概率,从而得出结论.

解答 解:由题意可得,2个球都是白球的概率为$\frac{4}{12}$•$\frac{3}{9}$=$\frac{1}{9}$,不满足条件,故排除A;
2个球中恰好有1个是白球的概率为$\frac{4}{12}$•$\frac{9}{12}$+$\frac{8}{12}$•$\frac{3}{12}$=$\frac{5}{12}$,故满足条件;
2个球都不是白球的概率为$\frac{8}{12}$•$\frac{9}{12}$=$\frac{1}{2}$,不满足条件,故排除C;
2个球不都是红球的概率为1-$\frac{8}{12}•\frac{9}{12}$=$\frac{1}{2}$,不满足条件,故排除D,
故选:B.

点评 本题主要考查相互独立事件的概率乘法公式的应用,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

8.已知数列{an}满足:an=$\frac{1}{n(n+1)}$,且Sn=$\frac{10}{11}$,则n的值为(  )
A.9B.10C.11D.12

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知无穷等差数列{an}中,它的前n项和Sn,且S7>S6,S7>S8那么(  )
A.{an}中a7最大B.{an}中a3或a4最大C.当n≥8时,an<0D.一定有S3=S11

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.(1)已知a,b是正实数,求证:$\frac{a}{\sqrt{b}}+\frac{b}{\sqrt{a}}$≥$\sqrt{a}+\sqrt{b}$.
(2)已知:A,B都是锐角,且A+B≠90°,(1+tanA)(1+tanB)=2,求证:A+B=45°.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.△ABC 中,内角 A,B,C 的对边分别为 a,b,c,且b2+ac=a2+c2,则∠B 的大小为$\frac{π}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.设f(x)是定义在R上的增函数,且对任意x,都有f(-x)+f(x)=0恒成立,如果实数m,n满足不等式f(m2-6m+21)+f(n2-8n)<0,则m2+n2的取值范围是(  )
A.(9,25)B.(3,7)C.(9,49)D.(13,49)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.设双曲线$\frac{{x}^{2}}{9}$-$\frac{{y}^{2}}{{b}^{2}}$=1(b>0)的焦点为F1、F2,P为该双曲线上的一点,若|PF1|=5,则|PF2|=11.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.极坐标系下曲线ρ=4sin θ表示圆,则点A(4,$\frac{π}{6}$)到圆心的距离为(  )
A.$\sqrt{3}$B.2$\sqrt{2}$C.2$\sqrt{3}$D.3

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知双曲线$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1$(a>0,b>0)的左右焦点分别为F1,F2,过右焦点F2的直线交双曲线右支于A、B两点,连结AF1、BF1,若|AB|=|BF1|且$∠AB{F_1}={90^o}$,则双曲线的离心率为(  )
A.$5-2\sqrt{2}$B.$\sqrt{5-2\sqrt{2}}$C.$6-3\sqrt{2}$D.$\sqrt{6-3\sqrt{2}}$

查看答案和解析>>

同步练习册答案