精英家教网 > 高中数学 > 题目详情
8.已知数列{an}满足:an=$\frac{1}{n(n+1)}$,且Sn=$\frac{10}{11}$,则n的值为(  )
A.9B.10C.11D.12

分析 由an=$\frac{1}{n(n+1)}$=$\frac{1}{n}-\frac{1}{n+1}$,且Sn=$\frac{10}{11}$,利用裂项求和法能求出n的值.

解答 解:∵数列{an}满足:an=$\frac{1}{n(n+1)}$=$\frac{1}{n}-\frac{1}{n+1}$,且Sn=$\frac{10}{11}$,
∴${S}_{n}=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+…+\frac{1}{n}-\frac{1}{n+1}$
=1-$\frac{1}{n+1}$=$\frac{10}{11}$,
解得n=10.
故选:B.

点评 本题考查数列的项数的求法,考查裂项求和法等基础知识,考查推理论证能力、运算求解能力,考查化归与转化思想,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

18.设命题p:?x∈R,使得x2+2ax+2-a=0;命题q:不等式ax2-$\sqrt{2}$ax+1>0对任意x∈R成立,若p假q真,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.若双曲线${x^2}-\frac{y^2}{b^2}=1\;(b>0)$的一条渐近线与圆x2+(y-2)2=1至多有一个交点,则双曲线的离心率为(  )
A.$(\;1,\;\sqrt{2}]$B.$(\;1,\;\sqrt{3}]$C.(1,2]D.(1,4]

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.已知$a∈(0,\frac{π}{2})$,tan α=2,则cosα=$\frac{\sqrt{5}}{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.解不等式0<x2-x-2≤4.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.如果角θ的终边经过点($\frac{\sqrt{5}}{5}$,$\frac{-2\sqrt{5}}{5}$),则cosθ=$\frac{\sqrt{5}}{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.复数z满足方程z=(z-2)i,则z=(  )
A.1+iB.1-iC.-1+iD.-1-i

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知函数f(x)=sin(ωx+$\frac{π}{3}$)(ω>0)的最小正周期为π,将y=f(x)的图象上所有点的横坐标缩短为原来的$\frac{1}{2}$(纵坐标不变),再把所得的图象向右平移φ个单位长度,得到偶函数y=g(x)的图象,则φ的值可能是(  )
A.$\frac{π}{8}$B.$\frac{5π}{24}$C.$\frac{3π}{4}$D.$\frac{15π}{24}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.甲口袋内装有大小相等的8个红球和4个白球,乙口袋内装有大小相等的9个红球和3个白球,从两个口袋内各摸出1个球,那么$\frac{5}{12}$等于(  )
A.2个球都是白球的概率B.2个球中恰好有1个是白球的概率
C.2个球都不是白球的概率D.2个球不都是红球的概率

查看答案和解析>>

同步练习册答案