精英家教网 > 高中数学 > 题目详情
13.如果角θ的终边经过点($\frac{\sqrt{5}}{5}$,$\frac{-2\sqrt{5}}{5}$),则cosθ=$\frac{\sqrt{5}}{5}$.

分析 由题意利用任意角的三角函数的定义,求得cosθ的值.

解答 解:∵角θ的终边经过点($\frac{\sqrt{5}}{5}$,$\frac{-2\sqrt{5}}{5}$),∴x=$\frac{\sqrt{5}}{5}$,y=-$\frac{2\sqrt{5}}{5}$,r=$\sqrt{{x}^{2}{+y}^{2}}$=1,
则cosθ=$\frac{x}{r}$=$\frac{\sqrt{5}}{5}$,
故答案为:$\frac{\sqrt{5}}{5}$.

点评 本题主要考查任意角的三角函数的定义,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

3.设x,y满足约束条件$\left\{\begin{array}{l}{x-y-2≥0}\\{x-5≤0}\\{y+2≥0}\end{array}\right.$,则z=x2+y2的最小值与最大值分别为(  )
A.$\sqrt{2}$,$\sqrt{34}$B.2,$\sqrt{34}$C.4,34D.2,34

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.正数a,b满足等式2a+3b=6,则$\frac{2}{a}+\frac{3}{b}$的最小值为(  )
A.$\frac{25}{6}$B.$\frac{8}{3}$C.$\frac{11}{3}$D.4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知实数a>0,b>0,若$\sqrt{2}$是4a与2b的等比中项,则下列不对的说法是(  )
A.$0<a<\frac{1}{2}$B.0<b<1C.$\frac{1}{2}<a+b<1$D.$\frac{3}{2}<3a+b<2$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知数列{an}满足:an=$\frac{1}{n(n+1)}$,且Sn=$\frac{10}{11}$,则n的值为(  )
A.9B.10C.11D.12

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.数列{an}满足:a1=1,an+1+(-1)nan=2n-1.
(1)求a2,a4,a6
(2)设bn=a2n,求数列{bn}的通项公式;
(3)设Sn为数列{an}的前n项和,求S2018

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.点P(1,2)到直线x-2y+5=0的距离为(  )
A.$\frac{1}{5}$B.$\frac{\sqrt{5}}{5}$C.$\frac{2\sqrt{5}}{5}$D.$\sqrt{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.下列4个命题:
①“若a、G、b成等比数列,则G2=ab”的逆命题;
②“如果x2+x-6≥0,则x>2”的否命题;
③在△ABC中,“若A>B”则“sinA>sinB”的逆否命题;
④当0≤α≤π时,若8x2-(8sinα)x+cos2α≥0对?x∈R恒成立,则α的取值范围是0≤α≤$\frac{π}{6}$.
其中真命题的序号是②③.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.设f(x)是定义在R上的增函数,且对任意x,都有f(-x)+f(x)=0恒成立,如果实数m,n满足不等式f(m2-6m+21)+f(n2-8n)<0,则m2+n2的取值范围是(  )
A.(9,25)B.(3,7)C.(9,49)D.(13,49)

查看答案和解析>>

同步练习册答案