精英家教网 > 高中数学 > 题目详情
(2011•黄冈模拟)如图,已知BD⊥平面ABC,AE∥BD,△ABC是等腰直角三角形,∠C=90°AB=BD=2AE,则面CDE与面ABC所成的角的正切值为
10
2
10
2
分析:由于是无棱二面角,故先作出二面角的棱,再利用定义作出平面角,从而利用直角三角形求二面角的平面角.
解答:解:延长BA到G,使AG=AB,连GE,GC
不妨设AE=1,则AB=BD=2,CA=CB=
2
,取AB中点F,连CF,则CF⊥AB,且FA=FB=FC=1,故CG=
10

设∠CGF=α,则sinα=
1
10
,作BH⊥GC延长线于H,令∠BHD=θ
则θ为面CDE与面ABC所成的角
BH=BG•sinα=
4
10

tanθ=
BD
BH
=
10
2

∴面CDE与面ABC所成的角的正切值为
10
2

故答案为
10
2
点评:本题的考点是二面角的平面角及求法,主要考查求解二面角的平面角,关键是找出二面角的棱,作出二面角的平面角,再进行求解.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2011•黄冈模拟)已知:如图|
OA
|=|
OB
|=1,
OA
OB
的夹角为120°,
OC
OA
的夹角为30°,若
OC
OA
OB
(λ,μ∈R)则
λ
μ
等于(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•黄冈模拟)已知{an}是正数组成的数列,a1=1,且点(
an
an+1)(n∈N*)
在函数y=x2+1的图象上.数列{bn}满足b1=0,bn+1=bn+3an(n∈N*).
(I)求数列{an},{bn}的通项公式;
(II)若cn=anbncosnπ(n∈N*),求数列{cn}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•黄冈模拟)在△ABC所在的平面内有一点P,如果
PA
+
PB
+
PC
=
AB
,那么△PAB的面积与△ABC的面积之比是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•黄冈模拟)在△ABC中,C=60°,AB=
3
,BC=
2
,那么A等于(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•黄冈模拟)分形几何学是美籍法国数学家伯努瓦••B•曼德尔布罗特(Benoit B.Mandelbrot) 在20世纪70年代创立的一门新学科,它的创立,为解决传统科学众多领域的难题提供了全新的思路.下图按照的分形规律生长成一个树形图,则第10行的空心圆点的个数是(  )

查看答案和解析>>

同步练习册答案