精英家教网 > 高中数学 > 题目详情

【题目】如图,在四棱锥中,底面为菱形,,且.

(1)求证:平面平面

(2)若,求二面角的余弦值.

【答案】(1)见解析; (2).

【解析】

1)先根据计算得线线线线垂直,再根据线面垂直判定定理以及面面垂直判定定理得结论,(2)建立空间直角坐标系,利用空间向量求二面角.

(1)证明:取中点,连结

因为底面为菱形,,所以

因为的中点,所以

在△中,的中点,所以

,则

因为,所以

在△中,的中点,所以

在△ 和△ 中,因为

所以△

所以.所以

因为平面平面

所以平面

因为平面,所以平面平面

(2)因为平面平面

所以平面.所以

由(1)得,所以所在的直线两两互相垂直.

为坐标原点,分别以所在直线为轴,轴,轴建立如图所示的空间直角坐标系.

,则

所以

设平面的法向量为

,则,所以

设平面的法向量为

,则,所以

设二面角,由于为锐角,

所以

所以二面角的余弦值为

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】国家统计局进行第四次经济普查,某调查机构从15个发达地区,10个欠发达地区,5个贫困地区中选取6个作为国家综合试点地区,然后再逐级确定普查区域,直到基层的普查小区.普查过程中首先要进行宣传培训,然后确定对象,最后入户登记,由于种种情况可能会导致入户登记不够顺利,这为正式普查提供了宝贵的试点经验,在某普查小区,共有50家企事业单位,150家个体经营户,普查情况如下表所示:

普查对象类别

顺利

不顺利

合计

企事业单位

40

10

50

个体经营户

90

60

150

合计

130

70

200

(1)写出选择6个国家综合试点地区采用的抽样方法;

(2)根据列联表判断是否有97.5%的把握认为“此普查小区的入户登记是否顺利与普查对象的类别有关”,分析造成这个结果的原因并给出合理化建议.

附:参考公式: ,其中

参考数据:

0.50

0.40

0.25

0.15

0.10

0.05

0.025

0.455

0.708

1.323

2.072

2.706

3.841

5.024

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某网站针对“2014年法定节假日调休安排展开的问卷调查,提出了ABC三种放假方案,调查结果如下:


支持A方案

支持B方案

支持C方案

35岁以下

200

400

800

35岁以上(含35岁)

100

100

400

1)在所有参与调查的人中,用分层抽样的方法抽取n个人,已知从支持A方案的人中抽取了6人,求n的值;

2)在支持B方案的人中,用分层抽样的方法抽取5人看作一个总体,从这5人中任意选取2人,求恰好有1人在35岁以上(含35岁)的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】一个圆锥的体积为,当这个圆锥的侧面积最小时,其母线与底面所成角的正切值为( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆:与直线:,:,过椭圆上的一点,的平行线,分别交,,两点,若为定值,则椭圆的离心率为______.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】一个圆锥的体积为,当这个圆锥的侧面积最小时,其母线与底面所成角的正切值为( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知点A是椭圆的上顶点,斜率为的直线交椭圆EAM两点,点N在椭圆E上,且.

1)当时,求的面积;

2)当时,求证:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某地区高考实行新方案,规定:语文、数学和英语是考生的必考科目,考生还须从物理、化学、生物、历史、地理和政治六个科目中选取三个科目作为选考科目.若一名学生从六个科目中选出了三个科目作为选考科目,则称该学生的选考方案确定;否则,称该学生选考方案待确定.例如,学生甲选择“物理、化学和生物”三个选考科目,则学生甲的选考方案确定,“物理、化学和生物”为其选考方案.

某学校为了了解高一年级420名学生选考科目的意向,随机选取30名学生进行了一次调查,统计选考科目人数如下表:

性别

选考方案确定情况

物理

化学

生物

历史

地理

政治

男生

选考方案确定的有6人

6

6

3

1

2

0

选考方案待确定的有8人

5

4

0

1

2

1

女生

选考方案确定的有10人

8

9

6

3

3

1

选考方案待确定的有6人

5

4

0

0

1

1

(Ⅰ)试估计该学校高一年级确定选考生物的学生有多少人?

(Ⅱ)写出选考方案确定的男生中选择“物理、化学和地理”的人数.(直接写出结果)

(Ⅲ)从选考方案确定的男生中任选2名,试求出这2名学生选考科目完全相同的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

1)若曲线在点处有相同的切线,求函数的极值;

2)若,讨论函数的单调性.

查看答案和解析>>

同步练习册答案