精英家教网 > 高中数学 > 题目详情
某校从参加高一年级期末考试的学生中抽出40名学生,将其成绩(均为整数)分成六段后画出如下部分频率分布直方图,观察图形的信息,回答下列问题:
(1)求第四小组的频率,并补全频率分布直方图;
(2)估计这次考试的及格率(60分及以上为及格)和平均分;
(3)从成绩是40~50分及90~100分的学生中选两人,记他们的成绩为x,y,求满足“”的概率.
(1)在频率分布直方图中第4小组的对应的矩形的高为
(2)及格率=0.75,平均分为:  
(3)所取2人的成绩满足“”的概率是
(1)利用频率分布直方图中的各组的频率和等于1,求出第四小组的频率.(2)求出60及以上的分数所在的第三、四、五、六组的频率和;利用组中值估算抽样学生的平均值为各组的中点乘以各组的频率和为平均值.
(3)先由频率分布直方图确定成绩在40~50分及90~100分的学生人数分别为4人和2人,
从这6人中选2人,共有15个基本结构,然后再求出事件“”包含的基本结构的个数,再利用古典概型概率计算公式计算其概率即可.
(1)由频率分布直方图可知第1、2、3、5、6小组的频率分别为:0.1、0.15、0.15、0.25、0.05,所以第4小组的频率为:1-0.1-0.15-0.15-0.25-0.05=0.3.
∴在频率分布直方图中第4小组的对应的矩形的高为,对应图形如图所示: 4分

(2)考试的及格率即60分及以上的频率
∴及格率为0.15+0.3+0.25+0.05=0.75
又由频率分布直方图有平均分为:
  ……8分
(3)设“成绩满足”为事件A
由频率分布直方图可求得成绩在40~50分及90~100分的学生人数分别为4人和2人,记在40~50分数段的4人的成绩分别为,90~100分数段的2人的成绩分别为,则从中选两人,其成绩组合的所有情况有:
,共15种,且每种情况的出现均等可能.若这2人成绩要满足“”,则要求一人选自40~50分数段,另一个选自90~100分数段,有如下情况:,共8种,所以由古典概型概率公式有,即所取2人的成绩满足“”的概率是.14分
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题


某种有奖销售的饮料,瓶盖内印有“奖励一瓶”或“谢谢购买”字样,购买一瓶若其瓶盖内印有“奖励一瓶”字样即为中奖,中奖概率为.甲、乙、丙三位同学每人购买了一瓶该饮料.
(1)求甲中奖且乙、丙都没有中奖的概率;
(2)求中奖人数ξ的分布列及数学期望Eξ.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

某人有5把钥匙,但忘记了开房门的是哪一把,于是,他逐把不重复地试开,问恰好第三次打开房门锁的概率是多少?

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本题满分13分)
某俱乐部举行迎圣诞活动,每位会员交50元活动费,可享受20元的消费,并参加一次游戏:掷两颗正方体骰子,点数之和为12点获一等奖,奖价值为a元的奖品;点数之和为11或10点获二等奖,奖价值为100元的奖品;点数之和为9或8点获三等奖,奖价值为30元的奖品;点数之和小于8点的不得奖。求:
(1)同行的两位会员中一人获一等奖、一人获二等奖的概率;
(2)如该俱乐部在游戏环节不亏也不赢利,求a的值。

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

在10枝铅笔中,有8枝正品和2枝次品,从中不放回地任取2枝,至少取到1枝次品的概率是(    )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

有6根细木棒,长度分别为1,2,3,4,5,6(cm),从中任取三根首尾相接,能搭成三角形的概率是(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

蒲丰(Buffon)投针问题:平面上画很多平行线,间距均为,向此平面投掷长为)的针,则此针与任一平行线相交的概率为                    

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分13分)
一个袋中有4个大小相同的小球,其中红球1个,白球2个,黑球1个,现从袋中有放回地取球,每次随机取一个,求:
(Ⅰ)连续取两次都是白球的概率;
(Ⅱ)若取一个红球记2分,取一个白球记1分,取一个黑球记0 分,连续取三次分数之和为4分的概率.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

汽车制造厂生产A、B、C三类轿车,每类轿车均有舒适型和标准型两种型号,某月的产量如下表(单位:辆)
 
轿车A
轿车B
轿车C
舒适型
100
150
Z
标准型
300
450
600
 
按类用分层抽样的方法在这个月生产的轿车中抽取50辆,其中有A类轿车10辆。
(1)求Z的值;
(2)用分层抽样的方法在C类轿车中抽取一个容量为5的样本,将该样本看成一个总体,从中任取2辆,求至少有一辆舒适型轿车的概率;
(3)用随机抽样的方法从B类舒适型轿车中抽取8辆,经检测它们的得分如下:9.4,8.6,9.2,9.6,8.7,9.3,9.0,8.2。把这8辆轿车的得分看成一个总体,从中任取一个数,求该数与样本平均数之差的绝对值不超过0.5的概率。

查看答案和解析>>

同步练习册答案