精英家教网 > 高中数学 > 题目详情

某种有奖销售的饮料,瓶盖内印有“奖励一瓶”或“谢谢购买”字样,购买一瓶若其瓶盖内印有“奖励一瓶”字样即为中奖,中奖概率为.甲、乙、丙三位同学每人购买了一瓶该饮料.
(1)求甲中奖且乙、丙都没有中奖的概率;
(2)求中奖人数ξ的分布列及数学期望Eξ.
(1)(2)

试题分析:解:(1)设甲、乙、丙中奖的事件分别为A、B、C,那么P(A)=P(B)=P(C)=,
P()=P(A)P()P()=
(2)ξ的可能值为0,1,2,3,
P(ξ=k)=(k=0,1,2,3)
所以中奖人数ξ的分布列为
ξ
0
1
2
3
P




Eξ=0×+1×+2×+3×=
点评:解决的关键是根据独立事件的概率的乘法公式,以及分布列的概念来求解,属于基础题。
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

为丰富高三学生的课余生活,提升班级的凝聚力,某校高三年级6个班(含甲、乙)举行唱歌比赛.比赛通过随机抽签方式决定出场顺序.
求:(1)甲、乙两班恰好在前两位出场的概率;
(2)比赛中甲、乙两班之间的班级数记为,求的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

在某校组织的一次篮球定点投篮测试中,规定每人最多投次,每次投篮的结果相互独立.在处每投进一球得分,在处每投进一球得分,否则得分. 将学生得分逐次累加并用表示,如果的值不低于分就认为通过测试,立即停止投篮,否则继续投篮,直到投完三次为止.投篮的方案有以下两种:方案1:先在处投一球,以后都在处投;方案2:都在处投篮.甲同学在处投篮的命中率为,在处投篮的命中率为.
(Ⅰ)甲同学选择方案1.
求甲同学测试结束后所得总分等于4的概率;
求甲同学测试结束后所得总分的分布列和数学期望
(Ⅱ)你认为甲同学选择哪种方案通过测试的可能性更大?说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

某食品厂为了检查甲乙两条自动包装流水线的生产情况,随即在这两条流水线上各抽取40件产品作为样本称出它们的重量(单位:克),重量值落在的产品为合格品,否则为不合格品.表1是甲流水线样本频数分布表,图1是乙流水线样本的频率分布直方图.

表1:(甲流水线样本频数分布表)  图1:(乙流水线样本频率分布直方图) 
(1)根据上表数据在答题卡上作出甲流水线样本的频率分布直方图;
(2)若以频率作为概率,试估计从两条流水线分别任取1件产品,该产品恰好是合格品的概率分别是多少;
(3)由以上统计数据完成下面列联表,并回答有多大的把握认为“产品的包装质量与两条自动包装流水线的选择有关”.
 
甲流水线
 乙流水线
 合计
合格品


 
不合格品


 
合 计
 
 

附:下面的临界值表供参考:

0.15
0.10
0.05
0.025
0.010
0.005
0.001

2.072
2.706
3.841
5.024
6.635
7.879
10.828
 (参考公式:,其中)

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

是离散型随机变量,,且,又已知,则的值为(   ) 
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

将高一(6)班52名学生分成A,B两组参加学校组织的义务植树活动,A组种植150棵大叶榕树苗,B组种植200棵红枫树苗.假定A,B两组同时开始种植.每名学生种植一棵大叶榕树苗用时小时,种植一棵枫树苗用时小时.完成这次植树任务需要最短时间为(  )
A. B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知每个人的血清中含有乙型肝炎病毒的概率为3‰,混合100人的血清,则混合血清中有乙型肝炎病毒的概率约为(精确到小数点后四位)  ________

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在边长为1的正方形OABC内取一点P(x,y),求:

(1)点P到原点距离小于1的概率;
(2)以x,y,1为边长能构成三角形的概率;
(3)以x,y,1为边长能构成锐角三角形的概率

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

某校从参加高一年级期末考试的学生中抽出40名学生,将其成绩(均为整数)分成六段后画出如下部分频率分布直方图,观察图形的信息,回答下列问题:
(1)求第四小组的频率,并补全频率分布直方图;
(2)估计这次考试的及格率(60分及以上为及格)和平均分;
(3)从成绩是40~50分及90~100分的学生中选两人,记他们的成绩为x,y,求满足“”的概率.

查看答案和解析>>

同步练习册答案