精英家教网 > 高中数学 > 题目详情
(本题满分13分)
某俱乐部举行迎圣诞活动,每位会员交50元活动费,可享受20元的消费,并参加一次游戏:掷两颗正方体骰子,点数之和为12点获一等奖,奖价值为a元的奖品;点数之和为11或10点获二等奖,奖价值为100元的奖品;点数之和为9或8点获三等奖,奖价值为30元的奖品;点数之和小于8点的不得奖。求:
(1)同行的两位会员中一人获一等奖、一人获二等奖的概率;
(2)如该俱乐部在游戏环节不亏也不赢利,求a的值。
(1)P(A)=; (2)一等奖可设价值为310 元的奖品。

试题分析:(Ⅰ)设掷两颗正方体骰子所得的点数记为(x,y),其中1≤x,y≤6,则获
一等奖只有(6,6)一种可能,获二等奖共有(6,5)、(5,6)、(4,6)、(6,4)、(5,5)共5种可能,由此能求出同行的三位会员一人获一等奖、两人获二等奖的概率.
(Ⅱ)设俱乐部在游戏环节收益为ξ元,则ξ的可能取值为30-a,-70,0,30,分别求
出P(ξ=30-a),P(ξ=-70),P(ξ=0),P(ξ=30)的值,由此能求出ξ的分布列和
Eξ.
解:(1)设掷两颗正方体骰子所得的点数记为(x,y),其中
则获一等奖只有(6,6)一种可能,其概率为:;   …………2分
获二等奖共有(6,5)、(5,6)、(4,6)、(6,4)、(5,5)共5种可能,其概率为:
…………5分
设事件A表示“同行的两位会员中一人获一等奖、一人获二等奖”,则有:
P(A)=;                          …………6分
(2)设俱乐部在游戏环节收益为ξ元,则ξ的可能取值为,,0,,……7分
ξ
30-a
-70
0
30
p




其分布列为:
则:Eξ=; …………11分
由Eξ=0得:a=310,即一等奖可设价值为310 元的奖品。      …………13分
点评:解决该试题的关键是解题时要认真审题,理解古典概型的特征:试验结果的有限性和每一个试验结果出现的等可能性,体现了化归的重要思想.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

某食品厂为了检查甲乙两条自动包装流水线的生产情况,随即在这两条流水线上各抽取40件产品作为样本称出它们的重量(单位:克),重量值落在的产品为合格品,否则为不合格品.表1是甲流水线样本频数分布表,图1是乙流水线样本的频率分布直方图.

表1:(甲流水线样本频数分布表)  图1:(乙流水线样本频率分布直方图) 
(1)根据上表数据在答题卡上作出甲流水线样本的频率分布直方图;
(2)若以频率作为概率,试估计从两条流水线分别任取1件产品,该产品恰好是合格品的概率分别是多少;
(3)由以上统计数据完成下面列联表,并回答有多大的把握认为“产品的包装质量与两条自动包装流水线的选择有关”.
 
甲流水线
 乙流水线
 合计
合格品


 
不合格品


 
合 计
 
 

附:下面的临界值表供参考:

0.15
0.10
0.05
0.025
0.010
0.005
0.001

2.072
2.706
3.841
5.024
6.635
7.879
10.828
 (参考公式:,其中)

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在边长为1的正方形OABC内取一点P(x,y),求:

(1)点P到原点距离小于1的概率;
(2)以x,y,1为边长能构成三角形的概率;
(3)以x,y,1为边长能构成锐角三角形的概率

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

从1,2,3,4四个数字中任取两个数求和,则和恰为偶数的概率是(    )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)一个口袋内装有大小相同的5 个球,其中3个白球分别记为A1、A2、A3;2个黑球分别记为B1、B2,从中一次摸出2个球.
(Ⅰ)写出所有的基本事件;
(Ⅱ)求摸出2球均为白球的概率

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

某校从参加高一年级期末考试的学生中抽出40名学生,将其成绩(均为整数)分成六段后画出如下部分频率分布直方图,观察图形的信息,回答下列问题:
(1)求第四小组的频率,并补全频率分布直方图;
(2)估计这次考试的及格率(60分及以上为及格)和平均分;
(3)从成绩是40~50分及90~100分的学生中选两人,记他们的成绩为x,y,求满足“”的概率.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

某人居住在城镇的处,准备开车到单位处上班,若该地各路段发生堵车事件都是相互独立的,且在同一路段发生堵车事件最多只有一次,发生堵车事件的概率如图(例如算作两个路段:路段发生堵车事件的概率为,路段发生堵车事件的概率为).
 
(Ⅰ)请你为其选择一条由的最短路线(即此人只选择从西向东和从南向北的路线),使得途中发生堵车事件的概率最小;
(Ⅱ)若记路线中遇到堵车次数为随机变量,求的数学期望.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

右图的矩形,长为5 m,宽为2 m,在矩形内随机地撒300颗黄豆,数得落在阴影部分的黄豆数为138颗,则我们可以估计出阴影部分的面积为       .

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知,则值分别为
A.B.C.D.

查看答案和解析>>

同步练习册答案