【题目】一种设备的单价为
元,设备维修和消耗费用第一年为
元,以后每年增加
元(
是常数).用
表示设备使用的年数,记设备年平均费用为
,即
(设备单价
设备维修和消耗费用)
设备使用的年数.
(Ⅰ)求
关于
的函数关系式;
(Ⅱ)当
,
时,求这种设备的最佳更新年限.
科目:高中数学 来源: 题型:
【题目】某家庭进行理财投资,根据长期收益率市场预测,投资
类产品的收益与投资额成正比,投资
类产品的收益与投资额的算术平方根成正比.已知投资1万元时
两类产品的收益分别为0.125万元和0.5万元.
(1)分别写出
两类产品的收益与投资额的函数关系;
(2)该家庭有20万元资金,全部用于理财投资,问:怎么分配资金能使投资获得最大收益,其最大收益是多少万元?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知递增等比数列{an},满足a1=1,且a2a4﹣2a3a5+a4a6=36.
(1)求数列{an}的通项公式;
(2)设bn=log3an+
,求数列{an2bn}的前n项和Sn;
(3)在(2)的条件下,令cn=
,{cn}的前n项和为Tn , 若Tn>λ恒成立,求λ的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设{an}是公比大于1的等比数列,Sn为数列{an}的前n项和.已知S3=7,且a1+3,3a2 , a3+4构成等差数列.
(1)求数列{an}的通项公式.
(2)令bn=lna3n+1 , n=1,2,…,求数列{bn}的前n项和Tn .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图:在四棱锥
中,底面
为菱形,且
,
底面
,
,
,
是
上点,且
平面
.
![]()
(1)求证:
;(2)求三棱锥
的体积.
【答案】(1)见解析;(2)
.
【解析】试题分析:(1)根据菱形性质得对角线相互垂直,根据
底面
得
,再根据线面垂直判定定理得
面
即可得结果(2)记
与
的交点为
,则BD 为高,三角形POE为底,根据锥体体积公式求体积
试题解析:(1)
面
![]()
(2)记
与
的交点为
,连接![]()
平面
![]()
在
中:
,
,
, ![]()
在
中:
,
,则
,即
,
则
![]()
【题型】解答题
【结束】
21
【题目】已知椭圆
:
的离心率
,且其的短轴长等于
.
![]()
(1)求椭圆
的标准方程;
(2)如图,记圆
:
,过定点
作相互垂直的直线
和
,直线
(斜率
)与圆
和椭圆
分别交于
、
两点,直线
与圆
和椭圆
分别交于
、
两点,若
与
面积之比等于
,求直线
的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆
的离心率为
,短轴长为
.
(1)求椭圆
的方程;
(2)设
,
是椭圆
上关于
轴对称的任意两个不同的点,连接
交椭圆
于另一点
,证明直线
与
轴相交于定点
;
(3)在(2)的条件下,过点
的直线与椭圆
交于
,
两点,求
的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com