精英家教网 > 高中数学 > 题目详情

【题目】一种设备的单价为设备维修和消耗费用第一年为以后每年增加是常数.用表示设备使用的年数记设备年平均费用为 (设备单价设备维修和消耗费用)设备使用的年数.

(Ⅰ)求关于的函数关系式;

(Ⅱ)当 求这种设备的最佳更新年限.

【答案】(Ⅰ);(Ⅱ)15

【解析】试题分析:

()由题意可知设备维修和消耗费用构成以为首项, 为公差的等差数列,结合等差数列前n项和公式可得

()由题意结合均值不等式的结论有,则,当且仅当时,年平均消耗费用取得最小值,即设备的最佳更新年限是15.

试题解析:

Ⅰ)由题意,设备维修和消耗费用构成以为首项, 为公差的等差数列,

因此年维修消耗费用为

于是

,所以

当且仅当,即 时,年平均消耗费用取得最小值

所以设备的最佳更新年限是15

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】若关于的不等式恰好有4个整数解,则实数的取值范围是(

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某家庭进行理财投资根据长期收益率市场预测投资类产品的收益与投资额成正比投资类产品的收益与投资额的算术平方根成正比已知投资1万元时两类产品的收益分别为0125万元和05万元

1分别写出两类产品的收益与投资额的函数关系;

2该家庭有20万元资金全部用于理财投资问:怎么分配资金能使投资获得最大收益其最大收益是多少万元?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知递增等比数列{an},满足a1=1,且a2a4﹣2a3a5+a4a6=36.
(1)求数列{an}的通项公式;
(2)设bn=log3an+ ,求数列{an2bn}的前n项和Sn
(3)在(2)的条件下,令cn= ,{cn}的前n项和为Tn , 若Tn>λ恒成立,求λ的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若关于的不等式恰好有4个整数解,则实数的取值范围是(

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设{an}是公比大于1的等比数列,Sn为数列{an}的前n项和.已知S3=7,且a1+3,3a2 , a3+4构成等差数列.
(1)求数列{an}的通项公式.
(2)令bn=lna3n+1 , n=1,2,…,求数列{bn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设a,b,c均为正数,且a+b+c=1.证明:
(1)
(2)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图:在四棱锥中,底面为菱形,且 底面

上点,且平面.

(1)求证: ;(2)求三棱锥的体积.

【答案】(1)见解析;(2).

【解析】试题分析:(1)根据菱形性质得对角线相互垂直,根据底面,再根据线面垂直判定定理得即可得结果(2)记的交点为,则BD 为高,三角形POE为底,根据锥体体积公式求体积

试题解析:(1)

(2)记的交点为,连接

平面

中:

中: ,则,即

型】解答
束】
21

【题目】已知椭圆 的离心率,且其的短轴长等于.

(1)求椭圆的标准方程;

(2)如图,记圆 ,过定点作相互垂直的直线,直线(斜率)与圆和椭圆分别交于两点,直线与圆和椭圆分别交于两点,若面积之比等于,求直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的离心率为,短轴长为.

(1)求椭圆的方程;

(2)设 是椭圆上关于轴对称的任意两个不同的点,连接交椭圆于另一点,证明直线轴相交于定点

(3)在(2)的条件下,过点的直线与椭圆交于 两点,求的取值范围.

查看答案和解析>>

同步练习册答案