精英家教网 > 高中数学 > 题目详情

【题目】若关于的不等式恰好有4个整数解,则实数的取值范围是(

A. B. C. D.

【答案】B

【解析】本题可用排除法,当时,解得有无数个整数解,排除时,不等式化为,得数个整数解,排除,当时,不等式化为,得恰有数个整数解,排除,故选B.

方法点睛】本题主要考查绝对值不等式的解法、排除法解选择题,属于难题. 用特例代替题设所给的一般性条件,得出特殊结论,然后对各个选项进行检验,从而做出正确的判断,这种方法叫做特殊法. 若结果为定值,则可采用此法. 特殊法是“小题小做”的重要策略,排除法解答选择题是高中数学一种常见的解题思路和方法,这种方法即可以提高做题速度和效率,又能提高准确性,这种方法主要适合下列题型:(1)求值问题(可将选项逐个验证);(2)求范围问题(可在选项中取特殊值,逐一排除);(3)图象问题(可以用函数性质及特殊点排除);(4)解方程、求解析式、求通项、求前 项和公式问题等等.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数处的切线经过点

(1)讨论函数的单调性;

(2)若不等式恒成立,求实数的取值范围.

【答案】(1)单调递减;(2)

【解析】试题分析: (1)利用导数几何意义,求出切线方程,根据切线过点,求出函数的解析式; (2)由已知不等式分离出,得,令,求导得出 上为减函数,再求出的最小值,从而得出的范围.

试题解析:(1)

设切点为

代入

单调递减

(2)恒成立

单调递减

恒大于0

点睛: 本题主要考查了导数的几何意义以及导数的应用,包括求函数的单调性和最值,属于中档题. 注意第二问中的恒成立问题,等价转化为求的最小值,直接求的最小值比较复杂,所以先令,求出在 上的单调性,再求出的最小值,得到的范围.

型】解答
束】
22

【题目】已知是椭圆的两个焦点, 为坐标原点,圆是以为直径的圆,一直线与圆相切并与椭圆交于不同的两点.

(1)求关系式;

(2)若,求直线的方程;

(3)当,且满足时,求面积的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在直三棱柱中,已知

1)求异面直线夹角的余弦值;

2)求二面角平面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数,其中是实数.

(l)若 ,求函数的单调区间;

(2)当时,若为函数图像上一点,且直线相切于点,其中为坐标原点,求的值

(3) 设定义在上的函数在点处的切线方程为在定义域内恒成立,则称函数具有某种性质,简称“函数”.当时,试问函数是否为“函数”?若是,请求出此时切点的横坐标;若不是,清说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若三个数a,1,c成等差数列(其中a≠c),且a2 , 1,c2成等比数列,则 的值为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(Ⅰ)求曲线在点处的切线方程;

(Ⅱ)求在区间上零点个数.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】定义在(0,+∞)上的函数f(x),如果对任意x∈(0,+∞),恒有f(kx)=kf(x),(k≥2,k∈N+)成立,则称f(x)为k阶缩放函数.
(1)已知函数f(x)为二阶缩放函数,且当x∈(1,2]时,f(x)=1+ x,求f(2 )的值;
(2)已知函数f(x)为二阶缩放函数,且当x∈(1,2]时,f(x)= ,求证:函数y=f(x)﹣x在(1,+∞)上无零点;
(3)已知函数f(x)为k阶缩放函数,且当x∈(1,k]时,f(x)的取值范围是[0,1),求f(x)在(0,kn+1](n∈N)上的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】甲袋中有1只黑球,3只红球;乙袋中有2只黑球,1只红球.

(1)从甲袋中任取两球,求取出的两球颜色不相同的概率;

(2)从甲,乙两袋中各取一球,求取出的两球颜色相同的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】一种设备的单价为设备维修和消耗费用第一年为以后每年增加是常数.用表示设备使用的年数记设备年平均费用为 (设备单价设备维修和消耗费用)设备使用的年数.

(Ⅰ)求关于的函数关系式;

(Ⅱ)当 求这种设备的最佳更新年限.

查看答案和解析>>

同步练习册答案