【题目】若关于
的不等式
恰好有4个整数解,则实数
的取值范围是( )
A.
B.
C.
D. ![]()
【答案】B
【解析】本题可用排除法,当
时,解得
有无数个整数解,排除
,当
时,不等式化为
,得
有
数个整数解,排除
,当
时,不等式化为
,得
,恰有
数个整数解,排除
,故选B.
【 方法点睛】本题主要考查绝对值不等式的解法、排除法解选择题,属于难题. 用特例代替题设所给的一般性条件,得出特殊结论,然后对各个选项进行检验,从而做出正确的判断,这种方法叫做特殊法. 若结果为定值,则可采用此法. 特殊法是“小题小做”的重要策略,排除法解答选择题是高中数学一种常见的解题思路和方法,这种方法即可以提高做题速度和效率,又能提高准确性,这种方法主要适合下列题型:(1)求值问题(可将选项逐个验证);(2)求范围问题(可在选项中取特殊值,逐一排除);(3)图象问题(可以用函数性质及特殊点排除);(4)解方程、求解析式、求通项、求前
项和公式问题等等.
科目:高中数学 来源: 题型:
【题目】已知函数
在
处的切线经过点![]()
(1)讨论函数
的单调性;
(2)若不等式
恒成立,求实数
的取值范围.
【答案】(1)
在
单调递减;(2)![]()
【解析】试题分析: (1)利用导数几何意义,求出切线方程,根据切线过点
,求出函数
的解析式; (2)由已知不等式分离出
,得
,令
,求导得出
在
上为减函数,再求出
的最小值,从而得出
的范围.
试题解析:(1)![]()
令
∴![]()
∴
设切点为![]()
代入![]()
∴![]()
∴![]()
∴
在
单调递减
(2)
恒成立
![]()
令![]()
![]()
∴
在
单调递减
∵![]()
∴![]()
∴
在
恒大于0
∴![]()
点睛: 本题主要考查了导数的几何意义以及导数的应用,包括求函数的单调性和最值,属于中档题. 注意第二问中的恒成立问题,等价转化为求
的最小值,直接求
的最小值比较复杂,所以先令
,求出在
上的单调性,再求出
的最小值,得到
的范围.
【题型】解答题
【结束】
22
【题目】已知
是椭圆
的两个焦点,
为坐标原点,圆
是以
为直径的圆,一直线
与圆
相切并与椭圆交于不同的两点
.
(1)求
和
关系式;
(2)若
,求直线
的方程;
(3)当
,且满足
时,求
面积的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设函数
,其中
是实数.
(l)若
,求函数
的单调区间;
(2)当
时,若
为函数
图像上一点,且直线
与
相切于点
,其中
为坐标原点,求
的值;
(3) 设定义在
上的函数
在点
处的切线方程为
,若
在定义域
内恒成立,则称函数
具有某种性质
,简称“
函数”.当
时,试问函数
是否为“
函数”?若是,请求出此时切点
的横坐标;若不是,清说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】定义在(0,+∞)上的函数f(x),如果对任意x∈(0,+∞),恒有f(kx)=kf(x),(k≥2,k∈N+)成立,则称f(x)为k阶缩放函数.
(1)已知函数f(x)为二阶缩放函数,且当x∈(1,2]时,f(x)=1+
x,求f(2
)的值;
(2)已知函数f(x)为二阶缩放函数,且当x∈(1,2]时,f(x)=
,求证:函数y=f(x)﹣x在(1,+∞)上无零点;
(3)已知函数f(x)为k阶缩放函数,且当x∈(1,k]时,f(x)的取值范围是[0,1),求f(x)在(0,kn+1](n∈N)上的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】甲袋中有1只黑球,3只红球;乙袋中有2只黑球,1只红球.
(1)从甲袋中任取两球,求取出的两球颜色不相同的概率;
(2)从甲,乙两袋中各取一球,求取出的两球颜色相同的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】一种设备的单价为
元,设备维修和消耗费用第一年为
元,以后每年增加
元(
是常数).用
表示设备使用的年数,记设备年平均费用为
,即
(设备单价
设备维修和消耗费用)
设备使用的年数.
(Ⅰ)求
关于
的函数关系式;
(Ⅱ)当
,
时,求这种设备的最佳更新年限.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com