精英家教网 > 高中数学 > 题目详情
在锐角三角形ABC中,a,b,c分别为内角A,B,C所对的边,且满足
3
a-2bsinA=0

(Ⅰ)求角B的大小;
(Ⅱ)若b=
7
,c=2,求
AB
AC
的值.
分析:(Ⅰ)利用正弦定理,求出角B的正弦函数值,然后求出角B的大小;
(Ⅱ)利用b=
7
,c=2,通过余弦定理求出a,求出A,然后求
AB
AC
的值.
解答:解:(Ⅰ)由
3
a-2bsinA=0

根据正弦定理得:
3
sinA-2sinBsinA=0
.…(3分)
因为sinA≠0,所以sinB=
3
2
.…(5分)
又B为锐角,则B=
π
3
.…(6分)
(Ⅱ)由(Ⅰ)可知,B=
π
3

因为b=
7
,c=2,
根据余弦定理,得 7=a2+4-4acos
π
3
,…(8分)
整理,得a2-2a-3=0.由于a>0,得a=3. …(10分)
于是cosA=
b2+c2-a2
2bc
=
7+4-9
4
7
=
7
14
,…(11分)
所以 
AB
AC
=|
AB
|•|
AC
|cosA=cbcosA=2×
7
×
7
14
=1
. …(14分)
点评:本题考查正弦定理与余弦定理的应用,向量的数量积的应用,考查计算能力.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

在锐角三角形ABC中,a,b,c分别是角A,B,C的对边,且a=2bsinA.
(1)求∠B的大小;
(2)若a=3
3
,c=5
,求边b的长.

查看答案和解析>>

科目:高中数学 来源: 题型:

在锐角三角形ABC中,a,b,c分别是角A、B、C的对边,
p
=(a+c,b),
q
=(c-a,b-c)且
p
q

(1)求A的大小;
(2)记f(B)=2sin2B+sin(2B+
π
6
)
,求f(B)的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•南充一模)在锐角三角形ABC中,角A,B,C对边a,b,c且a2+b2-
2
ab=c2,tanA-tanB=csc2A
①求证:2A-B=
π
2

②求三角形ABC三个角的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知命题p:在锐角三角形ABC中,?A,B,使sinA<cosB;命题q:?x∈R,都有x2+x+1>0,给出下列结论:
①命题“p∧q”是真命题;           
②命题“¬p∨q”是真命题;
③命题“¬p∨¬q”是假命题;       
④命题“p∧¬q”是假命题;
其中正确结论的序号是(  )

查看答案和解析>>

同步练习册答案