精英家教网 > 高中数学 > 题目详情

【题目】已知函数,且函数为偶函数。

1)求的解析式;

2)若方程有三个不同的实数根,求实数m的取值范围。

【答案】(1);(2)

【解析】

(1)利用是偶函数得到关于对称,从而,解得a进而得到解析式.

2)问题转化为方程有三个不同实数根,令,对求导,研究单调性及极值,得到大致图像,由图可得m的范围.

(1)由题可知所以函数的对称轴为

由于是偶函数,

所以,即关于对称

所以,即

所以

(2)方程有三个不同的实数根,即方程有三个不同实数根.

,由(1)有

所以,令,则

时,;当时,;当时,

故当时,单调递增;当时,单调递减;当时,单调递增.

所以,当时,取得极大值;当时,取得极小值,

又由于≥0,且当时,;当时,

其大致图像:

所以,方程有三个不同实数根时,m的范围是

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某工厂拟建一座平面图(如右图所示)为矩形且面积为200平方米的三级污水处理池,由于地形限制,长、宽都不能超过16米,如果池外周壁建造单价为每米400元,中间两条隔墙建造单价为每米248元,池底建造单价为每平方米80(池壁厚度忽略不计,且池无盖)

(1)写出总造价y()与污水处理池长x()的函数关系式,并指出其定义域;

(2)求污水处理池的长和宽各为多少时,污水处理池的总造价最低?并求最低总造价.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(Ⅰ)求的单调区间;

(Ⅱ)设,若对任意,均存在使得,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】双曲线与椭圆有相同的焦点,直线为双曲线的一条渐近线.

1)求双曲线的方程;

2)过点的直线交双曲线两点,交轴于点(点与的顶点不重合),当,且,求点的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】定义在R上的可导函数满足,记的导函数为,当时恒有.,则m的取值范围是(

A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为椭圆的左、右焦点,动点的坐标为,过点的直线与椭圆交于两点.

(3)的坐标;

(4)若直线的斜率之和为0,求的所有整数值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知以为首项的数列满足:

1)当时,求数列的通项公式;

2)当时,试用表示数列100项的和

3)当是正整数),,正整数时,判断数列是否成等比数列?并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设数集由实数构成,且满足:若),则.

(1)若,试证明中还有另外两个元素;

(2)集合是否为双元素集合,并说明理由;

(3)若中元素个数不超过8个,所有元素的和为,且中有一个元素的平方等于所有元素的积,求集合.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某学校共有教职工900人,分成三个批次进行继续教育培训,在三个批次中男、女教职工人数如下表所示.已知在全体教职工中随机抽取一名,抽到第二批次中女职工的概率是0.16.

第一批次

第二批次

第三批次

女教职工

196

男教职工

204

156

1)求的值;

2)现用分层抽样的方法在全体教职工中抽取54名做培训效果的调查,问应在第三批次中抽取教职工多少名?

3)已知,求第三批次中女教职工比男教职工多的概率.

查看答案和解析>>

同步练习册答案