精英家教网 > 高中数学 > 题目详情

【题目】某工厂拟建一座平面图(如右图所示)为矩形且面积为200平方米的三级污水处理池,由于地形限制,长、宽都不能超过16米,如果池外周壁建造单价为每米400元,中间两条隔墙建造单价为每米248元,池底建造单价为每平方米80(池壁厚度忽略不计,且池无盖)

(1)写出总造价y()与污水处理池长x()的函数关系式,并指出其定义域;

(2)求污水处理池的长和宽各为多少时,污水处理池的总造价最低?并求最低总造价.

【答案】(1) ,定义域为[12.5,16](2)当污水处理池的长为16米,宽为12.5米时,总造价最低,最低价为45000

【解析】

(1)因污水处理水池的长为x米,则宽为米,

总造价

由题设条件

解得12.5≤x≤16,即函数定义域为[12.5,16]

(2) .在[0,18]上单调递减,

x16时,y取得最小值,此时,

综上,当污水处理池的长为16米,宽为12.5米时,总造价最低,最低价为45000元.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数,,

,求函数的单调区间,并求出其极值;

若函数存在两个零点,k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知点(1,2)是函数的图象上一点,数列的前项和是.

(1)求数列的通项公式;

(2)若,求数列的前n项和

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】我们在求高次方程或超越方程的近似解时常用二分法求解,在实际生活中还有三分法.比如借助天平鉴别假币.有三枚形状大小完全相同的硬币,其中有一假币(质量较轻),把两枚硬币放在天平的两端,若天平平衡,则剩余一枚为假币,若天平不平衡,较轻的一端放的硬币为假币.现有 27 枚这样的硬币,其中有一枚是假币(质量较轻),如果只有一台天平,则一定能找到这枚假币所需要使用天平的最少次数为( )

A.2B.3C.4D.5

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)若函数在区间上存在零点,求实数的取值范围;

(2)若对任意的,总存在使得成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(Ⅰ)若为偶函数,求的值并写出的增区间;

(Ⅱ)若关于的不等式的解集为,当时,求的最小值;

(Ⅲ)对任意的,不等式恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,在“杨辉三角”中,去除所有为1的项,依次构成数列233464510105,…,则此数列前21项的和为_______________.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某温室大棚规定,一天中,从中午12点到第二天上午8点为保温时段,其余4小时为工作作业时段,从中午12点连续测量20小时,得出此温室大棚的温度y(单位:度)与时间t(单位:小时,)近似地满足函数关系,其中,b为大棚内一天中保温时段的通风量。

1)若一天中保温时段的通风量保持100个单位不变,求大棚一天中保温时段的最低温度(精确到0.1℃);

2)若要保持一天中保温时段的最低温度不小于17℃,求大棚一天中保温时段通风量的最小值。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,且函数为偶函数。

1)求的解析式;

2)若方程有三个不同的实数根,求实数m的取值范围。

查看答案和解析>>

同步练习册答案