精英家教网 > 高中数学 > 题目详情

【题目】已知函数.

(1)若函数在区间上存在零点,求实数的取值范围;

(2)若对任意的,总存在使得成立,求实数的取值范围.

【答案】(1);(2).

【解析】

1)根据对称轴分析零点存在时对应的的范围;

2)根据条件分析可得:的值域应为的值域的子集,此时注意对的关系进行分类讨论,由此得到满足条件的的取值范围.

(1)因函数的对称轴是

所以在区间上是减函数,

因函数在区间上存在零点,则必有

解得.

故所求实数的取值范围.

(2)若对任意的,总存在使得成立,只需函数的值域为函数的值域的子集.

在区间的值域为,

①当时,为常数,不符合题意舍去;

②当时,在区间的值域为

所以,解得.

③当时,在区间的值域为

所以,无解.

综上所述实数的取值范围.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知 为两条不同的直线, 为两个不同的平面,对于下列四个命题:

其中正确命题的个数有(

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆.

1)求过点的圆的切线方程;

2)若直线过点且被圆C截得的弦长为,求的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】汽车尾气中含有一氧化碳(),碳氢化合物()等污染物,是环境污染的主要因素之一,汽车在使用若干年之后排放的尾气中的污染物会出现递增的现象,所以国家根据机动车使用和安全技术、排放检验状况,对达到报废标准的机动车实施强制报废.某环保组织为了解公众对机动车强制报废标准的了解情况,随机调查了100人,所得数据制成如下列联表:

不了解

了解

总计

女性

50

男性

15

35

50

总计

100

(1)若从这100人中任选1人,选到了解机动车强制报废标准的人的概率为,问是否有的把握认为“对机动车强制报废标准是否了解与性别有关”?

(2)该环保组织从相关部门获得某型号汽车的使用年限与排放的尾气中浓度的数据,并制成如图所示的折线图,若该型号汽车的使用年限不超过15年,可近似认为排放的尾气中浓度与使用年限线性相关,试确定关于的回归方程,并预测该型号的汽车使用12年排放尾气中的浓度是使用4年的多少倍.

附:

0.15

0.10

0.05

0.025

0.010

0.005

0.001

2.072

2.706

3.841

5.024

6.635

7.879

10.828

参考公式:用最小二乘法求线性回归方程系数公式:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的左、右焦点为,若圆Q方程,且圆心Q在椭圆上.

1)求椭圆的方程;

2)已知直线交椭圆AB两点,过直线上一动点P作与垂直的直线交圆QCD两点,M为弦CD中点,的面积是否为定值?若为定值,求出此定值;若不为定值,说明你的理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某工厂拟建一座平面图(如右图所示)为矩形且面积为200平方米的三级污水处理池,由于地形限制,长、宽都不能超过16米,如果池外周壁建造单价为每米400元,中间两条隔墙建造单价为每米248元,池底建造单价为每平方米80(池壁厚度忽略不计,且池无盖)

(1)写出总造价y()与污水处理池长x()的函数关系式,并指出其定义域;

(2)求污水处理池的长和宽各为多少时,污水处理池的总造价最低?并求最低总造价.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线过点,且P到抛物线焦点的距离为2直线过点,且与抛物线相交于AB两点.

(Ⅰ)求抛物线的方程;

(Ⅱ)若点Q恰为线段AB的中点,求直线的方程;

(Ⅲ)过点作直线MAMB分别交抛物线于CD两点,请问CDQ三点能否共线?若能,求出直线的斜率;若不能,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,当时,的极大值为;当时,有极小值。求:

1的值;

2)函数的极小值。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】定义在R上的可导函数满足,记的导函数为,当时恒有.,则m的取值范围是(

A.B.C.D.

查看答案和解析>>

同步练习册答案