精英家教网 > 高中数学 > 题目详情
设曲线y=xn(1-x)在x=2处的切线与y轴交点的纵坐标为an,则数列{}的前n项和Sn等于    .
2n+1-2
∵y'=nxn-1-(n+1)xn,∴y'|x=2=n·2n-1-(n+1)·2n=-n·2n-1-2n,
∴切线方程为y+2n=(-n·2n-1-2n)(x-2),
令x=0得y=(n+1)·2n,即an=(n+1)·2n,
=2n,∴Sn=2n+1-2.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

在等差数列{an}中,a1=3,其前n项和为Sn,等比数列{bn}的各项均为正数,b1=1,公比为q,且b2+S2=12,q=.
(1)求an与bn.
(2)证明:++…+<.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

正项数列{an}满足-(2n-1)an-2n=0.
(1)求数列{an}的通项公式an;
(2)令bn=,求数列{bn}的前n项和Tn.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

记Sn是等差数列{an}前n项的和,Tn是等比数列{bn}前n项的积,设等差数列{an}公差d≠0,若对小于2011的正整数n,都有Sn=S2011-n成立,则推导出a1006=0.设等比数列{bn}的公比q≠1,若对于小于23的正整数n,都有Tn=T23-n成立,则(  )
A.b11=1B.b12=1C.b13=1D.b14=1

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知函数yanx2(an≠0,n∈N*)的图象在x=1处的切线斜率为2an-1+1(n≥2,n∈N*),且当n=1时其图象过点(2,8),则a7的值为(  )
A.B.7 C.5 D.6

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

等差数列{an}的公差不为零,首项a1=1,a2是a1和a5的等比中项,则数列的前10项之和是(  )
A.90B.100C.145D.190

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知数列{an}中,a1=1,a2=2,当整数n>1时,Sn+1+Sn-1=2(Sn+S1)都成立,则S5=    .

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

等差数列{an}的各项均为正数,其前n项和为Sn,满足2S2=a2(a2+1),且a1=1.
(1)求数列{an}的通项公式.
(2)设bn=,求数列{bn}的最小值项.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知等差数列{an}满足a2=3,Sn-Sn-3=51(n>3),Sn=100,则n的值为(  )
A.8 B.9
C.10 D.11

查看答案和解析>>

同步练习册答案