精英家教网 > 高中数学 > 题目详情
5.设函数f(x)=ax2+lnx,
(1)若函数y=f(x)的图象在点(1,f(1))处的切线斜率是-1,求a;
(2)已知a<0,若f(x)≤-$\frac{1}{2}$恒成立,求a的取值范围.

分析 (1)求出函数的导数,得到f′(1)=-1,求出a的值即可;
(2)求出函数的导数,解关于导函数的不等式,得到函数的单调区间,从而求出函数的最大值,得到关于a的不等式,解出即可.

解答 解:(1)由f(x)=ax2+lnx,可得$f'(x)=2ax+\frac{1}{x}$,--------(1分)
所以f'(1)=-1,解得a=-1.---------4 分
(2)$f'(x)=2ax+\frac{1}{x}=\frac{{2a{x^2}+1}}{x}=\frac{{2a({x^2}+\frac{1}{2a})}}{x},(x>0,a<0)$.
令f'(x)=0,则$x=\sqrt{-\frac{1}{2a}}$.
当$x∈({0,\sqrt{-\frac{1}{2a}}}]$时,f'(x)>0;
当$x∈(\sqrt{-\frac{1}{2a}},+∞)$时,f'(x)<0.-------(7分)
故$x=\sqrt{-\frac{1}{2a}}$为函数f(x)的唯一极大值点,
所以f(x)的最大值为$f(\sqrt{-\frac{1}{2a}})=-\frac{1}{2}+\frac{1}{2}ln(-\frac{1}{2a})$.-------(9分)
由题意有$-\frac{1}{2}+\frac{1}{2}ln(-\frac{1}{2a})≤-\frac{1}{2}$,解得$a≤-\frac{1}{2}$.
所以a的取值范围为$(-∞,-\frac{1}{2}]$.--------(12分)

点评 本题考查了切线方程问题,考查函数的单调性、最值问题,考查导数的应用,是一道中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

15.已知函数f(x)=cos$\frac{πx}{4}$,集合A={2,3,4,5,6},现从集合A中任取两数m,n,且m≠n,则f(m)•f(n)≠0的概率为(  )
A.$\frac{3}{10}$B.$\frac{7}{15}$C.$\frac{3}{5}$D.$\frac{7}{10}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知f(x)=lnx-$\frac{a}{x}$(a∈R).
(1)若函数f(x)的图象在点(1,f(1))处的切线平行于直线x+y=0,求a的值;
(2)讨论函数f(x)在定义域上的单调性;
(3)若函数f(x)在[1,e]上的最小值为$\frac{3}{2}$,求a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.若函数f(x)=x3+bx2+x恰有三个单调区间,则实数b的取值范围为(-∞,-$\sqrt{3}$)∪($\sqrt{3}$,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.设函数f(x)=ex(2x-1)-ax+a,其中a<1,若存在两个整数x1,x2,使得f(x1),f(x2)都小于0,则a的取值范围是(  )
A.[$\frac{5}{{3{e^2}}}$,$\frac{3}{2e}$)B.[-$\frac{3}{2e}$,$\frac{3}{2e}$)C.[$\frac{5}{{3{e^2}}}$,1)D.[$\frac{3}{2e}$,1)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.证明:1-$\frac{1}{x+1}$≤ln(x+1)≤x,其中x>-1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.设偶函数f(x)=x2+bx+c的一个零点为1,直线y=kx+m(k>0)与函数y=f(x)的图象相切.
(Ⅰ)求函数y=f(x)的解析式;
(Ⅱ)求mk的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.为了考察甲乙两种小麦的长势,分别从中抽取10株苗,测得苗高如下:
12131415101613111511
111617141319681016
(1)画出两种小麦的茎叶图,
(2)写出甲种子的众数和中位数
(3)试运用所学数学知识说明哪种小麦长得比较整齐?

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.设函数f(x)是定义在R上的偶函数,且对任意的x,都有f(x)=f(2-x),当x∈[0,1]时,f(x)=x-$\frac{1}{2}$,则f(20)=-$\frac{1}{2}$.

查看答案和解析>>

同步练习册答案