精英家教网 > 高中数学 > 题目详情
点P(4,4),圆C:(x-1)2+y2=5与椭圆E:
x2
18
+
y2
2
=1
有一个公共点A(3,1),F1、F2分别是椭圆左、右焦点,直线PF1与圆C相切.设Q为椭圆E上的一个动点,求
AP
AQ
的取值范围.
∵A(3,1),P(4,4),
AP
=(1,3)

设Q(x,y),则
AQ
=(x-3,y-1)

AP
AQ
=(x-3)+3(y-1)=x+3y-6

x2
18
+
y2
2
=1

即x2+(3y)2=18,而x2+(3y)2≥2|x|•|3y|,
∴-18≤6xy≤18.则(x+3y)2=x2+(3y)2+6xy=18+6xy的取值范围是[0,36].
∴x+3y的取值范围是[-6,6],
因此,
AP
AQ
的取值范围是[-12,0].
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:单选题

如果椭圆
x2
36
+
y2
9
=1
的弦AB被点M(x0,y0)平分,设直线AB的斜率为k1,直线OM(O为坐标原点)的斜率为k2,则k1•k2=(  )
A.4B.
1
4
C.-1D.-
1
4

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

设F1、F2为椭圆
x2
9
+
y2
4
=1
的两个焦点,P为椭圆上一点,已知P、F1、F2是一个直角三角形的三个顶点,且|PF1|>|PF2|,则
|PF1|
|PF2|
的值为______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,已知直线l:y=2x-4交抛物线y2=4x于A、B两点,试在抛物线AOB这段曲线上求一点P,使△ABP的面积最大,并求这个最大面积.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

若直线mx+ny=4和⊙O:x2+y2=4相交,则点P(m,n)与椭圆C:
x2
4
+
y2
3
=1的位置关系为(  )
A.点P在椭圆C内B.点P在椭圆C上
C.点P在椭圆C外D.以上三种均有可能

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知双曲线
x2
m
-
y2
n
=1
(mn≠0)的离心率为2,有一个焦点恰好是抛物线y2=4x的焦点,则此双曲线的渐近线方程是(  )
A.
3
x±y=0
B.
3
y=0
C.3x±y=0D.x±3y=0

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知线段AB的端点B的坐标是(1,2),端点A在圆(x+1)2+y2=4上运动,点M是AB的中点.
(1)若点M的轨迹为曲线C,求此曲线的方程;
(2)设直线l:x+y+3=0,求曲线C上的点到直线l距离的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

设椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)
过点(0,4),离心率为
3
5

(1)求C的方程;
(2)求过点(3,0)且斜率为
4
5
的直线被C所截线段的长度.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,椭圆C1
x2
a2
+
y2
b2
=1
(a>b>0)和圆C2:x2+y2=b2,已知圆C2将椭圆C1的长轴三等分,椭圆C1右焦点到右准线的距离为
2
4
,椭圆C1的下顶点为E,过坐标原点O且与坐标轴不重合的任意直线l与圆C2相交于点A、B.
(1)求椭圆C1的方程;
(2)若直线EA、EB分别与椭圆C1相交于另一个交点为点P、M.
①求证:直线MP经过一定点;
②试问:是否存在以(m,0)为圆心,
3
2
5
为半径的圆G,使得直线PM和直线AB都与圆G相交?若存在,请求出所有m的值;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案