精英家教网 > 高中数学 > 题目详情
设数列{an}满足a1=0,且an+1=an+
1
4
+
1+4an
2
.  
(Ⅰ)求a2的值;
(Ⅱ)设
1
4
+an
=bn
,试判断数列{bn}是否为等差数列?并求数列{bn}的通项公式;
(Ⅲ)设g(n)=
1
bn+1
+
1
bn+2
+
1
bn+3
+…+
1
b2n
,且g(n)≥m(m∈R)对任意n>1,n∈N*都成立,求m的最大值.
(Ⅰ)∵a1=0,且an+1=an+
1
4
+
1+4an
2

∴a2=
1
4
+
1
2
=
3
4

(Ⅱ)∵
1
4
+an
=bn

∴an=bn2-
1
4
,代入an+1=an+
1
4
+
1+4an
2
得到:
b2n+1
=(bn+
1
2
)2

∵bn>0,
∴bn+1-bn=
1
2
,所以数列{bn}是以b1=
1
2
为首项,公差为
1
2
的等差数列.bn=
1
2
+(n-1)•
1
2
=
1
2
n.即数列{bn}的通项公式为bn=
1
2
n.
(Ⅲ)要使g(n)≥m(m∈R)对任意n>1,n∈N*都成立,只须m≤[g(n)min].
∵g(n)=
1
bn+1
+
1
bn+2
+
1
bn+3
+…+
1
b2n
=2(
1
n+1
+
1
n+2
+
1
n+3
+…+
1
2n
)
,∴g(n+1)-g(n)=2(
1
2n+1
+
1
2n+2
-
1
n+1
)=
1
(2n+1)•(n+1)
>0,∴g(n)是增的,
[g(n)]min=g(2)=2•(
1
3
+
1
4
)=
7
6

∴m的最大值为
7
6
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设数列{an}满足a1=1,且对任意的n∈N*,点Pn(n,an)都有
.
PnPn+1
=(1,2)
,则数列{an}的通项公式为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•日照一模)若数列{bn}:对于n∈N*,都有bn+2-bn=d(常数),则称数列{bn}是公差为d的准等差数列.如:若cn=
4n-1,当n为奇数时
4n+9,当n为偶数时.
则{cn}
是公差为8的准等差数列.
(I)设数列{an}满足:a1=a,对于n∈N*,都有an+an+1=2n.求证:{an}为准等差数列,并求其通项公式:
(Ⅱ)设(I)中的数列{an}的前n项和为Sn,试研究:是否存在实数a,使得数列Sn有连续的两项都等于50.若存在,请求出a的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•日照一模)若数列{bn}:对于n∈N*,都有bn+2-bn=d(常数),则称数列{bn}是公差为d的准等差数列.如数列cn:若cn=
4n-1,当n为奇数时
4n+9,当n为偶数时
,则数列{cn}是公差为8的准等差数列.设数列{an}满足:a1=a,对于n∈N*,都有an+an+1=2n.
(Ⅰ)求证:{an}为准等差数列;
(Ⅱ)求证:{an}的通项公式及前20项和S20

查看答案和解析>>

科目:高中数学 来源: 题型:

设数列{an}满足a1=1,a2+a4=6,且对任意n∈N*,函数f(x)=(an-an+1+an+2)x+an+1?cosx-an+2sinx满足f′(
π
2
)=0
cn=an+
1
2an
,则数列{cn}的前n项和Sn为(  )
A、
n2+n
2
-
1
2n
B、
n2+n+4
2
-
1
2n-1
C、
n2+n+2
2
-
1
2n
D、
n2+n+4
2
-
1
2n

查看答案和解析>>

科目:高中数学 来源: 题型:

设数列{an}满足:a1=2,an+1=1-
1
an
,令An=a1a2an,则A2013
=(  )

查看答案和解析>>

同步练习册答案