已知左焦点为F(-1,0)的椭圆过点E(1,).过点P(1,1)分别作斜率为k1,k2的椭圆的动弦AB,CD,设M,N分别为线段AB,CD的中点.
(1)求椭圆的标准方程;
(2)若P为线段AB的中点,求k1;
(3)若k1+k2=1,求证直线MN恒过定点,并求出定点坐标.
(1) +=1 (2) - (3)证明见解析 (0,-)
【解析】
解:(1)依题设c=1,且右焦点F′(1,0).
所以2a=|EF|+|EF′|=+
=2,
b2=a2-c2=2,
故所求的椭圆的标准方程为+=1.
(2)设A(x1,y1),B(x2,y2),
则+=1,①
+=1.②
②-①,得+=0.
所以k1==-=-=-.
(3)依题设,k1≠k2.
设M(xM,yM),
又直线AB的方程为y-1=k1(x-1),
即y=k1x+(1-k1),
亦即y=k1x+k2,
代入椭圆方程并化简得(2+3)x2+6k1k2x+3-6=0.
于是,xM=,yM=,
同理,xN=,yN=.
当k1k2≠0时,
直线MN的斜率k==
=.
直线MN的方程为y-=(x-),
即y=x+(·+),
亦即y=x-.
此时直线过定点(0,-).
当k1k2=0时,直线MN即为y轴,
此时亦过点(0,-).
综上,直线MN恒过定点,且坐标为(0,-).
科目:高中数学 来源: 题型:
2
| ||
3 |
查看答案和解析>>
科目:高中数学 来源:不详 题型:解答题
2
| ||
3 |
查看答案和解析>>
科目:高中数学 来源: 题型:
(本小题满分14分)
已知椭圆C1: (a>b>0)的离心率为,直线:+2=0与以原点为圆心、以椭圆C1的短半轴长为半径的圆相切。
(1)求椭圆C1的方程;
(2)设椭圆C1的左焦点为F 1,右焦点F2,直线过点F1且垂直于椭圆的长轴,动直线垂直直线于点P,线段PF2的垂直平分线交于点M,求点M的轨迹C2的方程;
(3)若A(x1,2)、B(x2 ,Y2)、C(x0,y0)是C2上不同的点,且AB⊥ BC,求Yo的取值范围。
查看答案和解析>>
科目:高中数学 来源:2013年江苏省南通市高考数学一模试卷(解析版) 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com