【题目】已知等差数列
满足
,
.
(1)求
的通项公式;
(2)设等比数列
满足
,
,问:
与数列
的第几项相等?
(3)若数列
,求数列
的前
项和
.
科目:高中数学 来源: 题型:
【题目】下面是甲、乙两位同学高三上学期的5次联考数学成绩,现在只知其从第1次到第5次分数所在区间段分布的条形图(从左至右依次为第1至第5次),则从图中可以读出一定正确的信息是( )
![]()
A.甲同学的成绩的平均数大于乙同学的成绩的平均数
B.甲同学的成绩的方差大于乙同学的成绩的方差
C.甲同学的成绩的极差小于乙同学的成绩的极差
D.甲同学的成绩的中位数小于乙同学的成绩的中位数
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】2015年我国将加快阶梯水价推行,原则是“保基本、建机制、促节约”,其中“保基本”是指保证至少80%的居民用户用水价格不变.为响应国家政策,制定合理的阶梯用水价格,某城市采用简单随机抽样的方法分别从郊区和城区抽取5户和20户居民的年人均用水量进行调研,抽取的数据的茎叶图如下(单位:吨):
![]()
(1)在郊区的这5户居民中随机抽取2户,求其年人均用水量都不超过30吨的概率;
(2)设该城市郊区和城区的居民户数比为
,现将年人均用水量不超过30吨的用户定义为第一阶梯用户,并保证这一梯次的居民用户用水价格保持不变.试根据样本估计总体的思想,分析此方案是否符合国家“保基本”政策.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知集合M=
,对它的非空子集A,可将A中每个元素K都乘以
再求和(如A=
,可求得和为
),则对M的所有非空子集,这些和的总和是__________________.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在直角坐标系
中,直线
的参数方程为
(t为参数),直线
的参数方程为
(
为参数).设
与
的交点为
,当
变化时,
的轨迹为曲线![]()
(1)写出
的普通方程;
(2)以坐标原点为极点,
轴正半轴为极轴建立极坐标系,设
,
为
与
的交点,求
的极径.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设抛物线
的焦点为
,过点
的直线与抛物线相交于
两点,与抛物线的准线相交于点
,
,则
与
的面积之比
__________.
【答案】![]()
【解析】![]()
由题意可得抛物线的焦点
的坐标为
,准线方程为
。
如图,设
,过A,B分别向抛物线的准线作垂线,垂足分别为E,N,则
,解得
。
把
代入抛物线
,解得
。
∴直线AB经过点
与点
,
故直线AB的方程为
,代入抛物线方程解得
。
∴
。
在
中,
,
∴![]()
∴
。答案: ![]()
点睛:
在解决与抛物线有关的问题时,要注意抛物线的定义在解题中的应用。抛物线定义有两种用途:一是当已知曲线是抛物线时,抛物线上的点M满足定义,它到准线的距离为d,则|MF|=d,可解决有关距离、最值、弦长等问题;二是利用动点满足的几何条件符合抛物线的定义,从而得到动点的轨迹是抛物线.
【题型】填空题
【结束】
17
【题目】已知
三个内角
所对的边分别是
,若
.
(1)求角
;
(2)若
的外接圆半径为2,求
周长的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知双曲线
=1(a>0,b>0)的右焦点为F(c,0).
(1)若双曲线的一条渐近线方程为y=x且c=2,求双曲线的方程;
(2)以原点O为圆心,c为半径作圆,该圆与双曲线在第一象限的交点为A,过A作圆的切线,斜率为-
,求双曲线的离心率.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com