精英家教网 > 高中数学 > 题目详情
9.已知两条直线ax+y-2=0和3x+(a+2)y+1=0互相平行,则实数a等于(  )
A.1或-3B.-1或3C.1或3D.-1或-3

分析 应用两直线平行关系的判定方法,列式直接求解即可.

解答 解:两条直线ax+y-2=0和3x+(a+2)y+1=0互相平行,
所以 $\frac{3}{a}$=$\frac{1}{a+2}$≠$\frac{-2}{1}$,
解得 a=-3,或a=1.
故选:A.

点评 本题考查两条直线平行的判定,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

16.已知sinx=-1,则角x等于(  )
A.$\frac{3π}{2}$B.kπ(k∈Z)C.2kπ-$\frac{π}{2}$(k∈Z)D.2(k+1)π+$\frac{3π}{2}$(k∈Z)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.在括号内填上适当的函数,使下列等式成立:
(1)d(ax)=adx;
(2)d($\frac{2}{3}{x}^{\frac{3}{2}}$)$\sqrt{x}$dx;
(3)d(-$\frac{1}{3}$sin3x)=-cos3xdx;
(4)d($\frac{1}{tanx}$)=-$\frac{1}{1+{x}^{2}}$dx.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知函数f(x)=lnx,g(x)=ex,其中e是白然对数的底数,e=2.71828…
(I)若函数φ(x)=f(x)-$\frac{x+1}{x-1}$求函数φ(x)的单调区间;
(Ⅱ)设直线l为函数f(x)的图象上一点A(x0,f(x0)处的切线,证明:在区间(1,+∞)上存在唯一的x0,使得直线l与曲线y=g(x)相切.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.如图,在棱柱ABCD-A1B1C1D1中,AA1⊥底面ABCD,底面ABCD为直角梯形,其中AB∥CD,AB⊥AD,AB=AC=2CD=2,AA1=$\sqrt{3}$,过AC的平面分别与A1B1,B1C1交于E1,F1,且E1为A1B1的中点.
(Ⅰ)求证:平面ACF1E1∥平面A1C1D;
(Ⅱ)求锥体B-ACF1E1的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知函数f(x)=(x-t)|x|(t∈R).
(Ⅰ)讨论函数f(x)的单调区间;
(Ⅱ)若?t∈(0,2),对于?x∈[-1,2],不等式f(x)>x+a都成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.如图,在三棱柱ABC-A1B1C1中,侧棱AA1⊥底面ABC,AC=3,AB=5,BC=4,AA1=4,点D是AB的中点.
(1)求证:AC⊥BC1
(2)求证:AC1∥平面CDB1
(3)求三棱锥D-AA1C1的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.对定义在区间I上的函数f(x),若存在开区间(a,b)?I和常数C,使得对任意的x∈(a,b)都有-C<f(x)<C,且对对任意的x∉(a,b)都有|f(x)|=C恒成立,则称函数f(x)为区间I上的“Z型”函数,给出下列函数:①$f(x)=\left\{{\begin{array}{l}{2,x≤1}\\{4-2x,1<x<3}\\{-2,x≥3}\end{array}}\right.$;②$f(x)=\sqrt{x}$;③f(x)=|sinx|;④f(x)=x+cosx.其中在定义域上是“Z型”函数的为(  )
A.B.①②C.②③D.③④

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.数列{an}中,已知a1=1,S2=2,且Sn+1+2Sn-1=3Sn(n≥2,n∈N*),则数列{an}为(  )
A.等差数列B.等比数列
C.从第二项起为等差数列D.从第二项起为等比数列

查看答案和解析>>

同步练习册答案