精英家教网 > 高中数学 > 题目详情
19.数列{an}中,已知a1=1,S2=2,且Sn+1+2Sn-1=3Sn(n≥2,n∈N*),则数列{an}为(  )
A.等差数列B.等比数列
C.从第二项起为等差数列D.从第二项起为等比数列

分析 由已知求得a2=1,再由数列递推式变形得到an+1=2an(n≥2),即$\frac{{{a_{n+1}}}}{a_n}=2(n≥2)$,验证$\frac{a_2}{a_1}=1$不满足上式,可得数列{an}从第二项起为等比数列.

解答 解:由a1=1,S2=2,得a2=S2-a1=2-1=1,
由Sn+1+2Sn-1=3Sn,得Sn+1-Sn=2(Sn-Sn-1)(n≥2),
即an+1=2an(n≥2),
∴$\frac{{{a_{n+1}}}}{a_n}=2(n≥2)$,
又$\frac{a_2}{a_1}=1$不满足上式,
∴数列{an}从第二项起为等比数列.
故选:D.

点评 本题考查数列递推式,考查了等比关系的确定,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

9.已知两条直线ax+y-2=0和3x+(a+2)y+1=0互相平行,则实数a等于(  )
A.1或-3B.-1或3C.1或3D.-1或-3

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.设$\overrightarrow a=(\sqrt{3},1),\overrightarrow b=(x,-3)$,且$\overrightarrow{a}$⊥$\overrightarrow{b}$,则向量$\overrightarrow a-\overrightarrow b$的$\overrightarrow b$夹角为(  )
A.30°B.60°C.120°D.150°

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知函数$f(x)=\left\{{\begin{array}{l}{3+{{log}_2}x,x>0}\\{2{x^2}-3x,x≤0}\end{array}}\right.$,则不等式f(x)≤5的解集为(  )
A.[-1,1]B.(-∞,-1]∪(0,1)C.[-1,4]D.(-∞,-1]∪[0,4]

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.给出下列四个结论:
①如果$\overrightarrow a•\overrightarrow b=\overrightarrow a•\overrightarrow c,且\overrightarrow a≠\overrightarrow 0$,那么$\overrightarrow b,\overrightarrow c$在$\overrightarrow a$方向上的投影相等
②已知平面α和互不相同的三条直线m、n、l,若l、m是异面直线,m∥α,l∥α、且n⊥l,n⊥m,则n⊥α;
③过平面α的一条斜线有一个平面与平面α垂直
④设回归直线方程为$\hat y=2-2.5x$,当变量x增加一个单位时,$\hat y$平均增加2个单位
其中正确结论的个数为  (  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.f(x)=$\left\{\begin{array}{l}{\frac{\sqrt{x+1}-1}{x},x≠0}\\{0,x=0}\end{array}\right.$,则x=0是(  )
A.可去间断点B.无穷间断点C.连续点D.跳跃间断点

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.如图,网格纸上正方形小格的边长为1个单位长度,图中粗线曲出的是某几何体的三视图,则该几何体的表面积为(  )
A.16B.8$\sqrt{5}$C.32D.16$\sqrt{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.如图,在多面体ABCDEF中,四边形ABCD是矩形,四边形ABEF为等腰梯形,且AB∥EF,AF=2,EF=2AB=4AD=4$\sqrt{2}$,平面ABCD⊥平面ABEF.
(1)求证:BE⊥DF;
(2)求二面角E-DF-A的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.某公司为了增加其商品的销售利润,调查了该商品投入的广告费用x与销售利润y的统计数据如表:
广告费用x(万元)2356
销售利润y(万元)57911
由表中数据,得线性回归方程l:$\widehat{y}$=$\widehat{b}$x+$\widehat{a}$($\widehat{b}$=$\frac{\sum_{i=1}^{n}({x}_{i}-\overline{x})({y}_{i}-\overline{y})}{\sum_{i=1}^{n}({x}_{i}-\overline{x})^{2}}$,$\widehat{a}$=$\overline{y}$-$\widehat{b}$x),则下列结论错误的是(  )
A.$\hat b>0$B.$\hat a>0$C.直线l过点(4,8)D.直线l过点(2,5)

查看答案和解析>>

同步练习册答案