精英家教网 > 高中数学 > 题目详情
9.某公司为了增加其商品的销售利润,调查了该商品投入的广告费用x与销售利润y的统计数据如表:
广告费用x(万元)2356
销售利润y(万元)57911
由表中数据,得线性回归方程l:$\widehat{y}$=$\widehat{b}$x+$\widehat{a}$($\widehat{b}$=$\frac{\sum_{i=1}^{n}({x}_{i}-\overline{x})({y}_{i}-\overline{y})}{\sum_{i=1}^{n}({x}_{i}-\overline{x})^{2}}$,$\widehat{a}$=$\overline{y}$-$\widehat{b}$x),则下列结论错误的是(  )
A.$\hat b>0$B.$\hat a>0$C.直线l过点(4,8)D.直线l过点(2,5)

分析 求出回归方程,根据回归方程进行判断.

解答 解:$\overline{x}$=$\frac{2+3+5+6}{4}=4$,$\overline{y}=\frac{5+7+9+11}{4}=8$.
∴直线l经过点(4,8).
$\sum_{i=1}^{4}({x}_{i}-\overline{x})({y}_{i}-\overline{y})$=(-2)×(-3)+(-1)×(-1)+1×1+2×3=14.
$\sum_{i=1}^{4}({x}_{i}-\overline{x})^{2}$=(-2)2+(-1)2+12+22=10.
∴$\stackrel{∧}{b}$=$\frac{14}{10}=1.4$,$\stackrel{∧}{a}$=8-1.4×4=2.4.
∴回归方程为y=1.4x+2.4.
当x=2时,y=1.4×2+2.4=5.2.∴直线l过点(2,5.2)
故选D.

点评 本题考查了线性回归方程的特点,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

19.数列{an}中,已知a1=1,S2=2,且Sn+1+2Sn-1=3Sn(n≥2,n∈N*),则数列{an}为(  )
A.等差数列B.等比数列
C.从第二项起为等差数列D.从第二项起为等比数列

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.某营养学家建议:高中生每天的蛋白质摄入量控制在[60,90](单位:克),脂肪的摄入量控制在[18,27](单位:克).某学校食堂提供的伙食以食物A和食物B为主,1千克食物A含蛋白质60克,含脂肪9克,售价20元;1千克食物B含蛋白质30克,含脂肪27克,售价15元.
(Ⅰ)如果某学生只吃食物A,判断他的伙食是否符合营养学家的建议,并说明理由;
(Ⅱ)为了花费最低且符合营养学家的建议,学生需要每天同时食用食物A和食物B各多少千克?并求出最低需要花费的钱数.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.某单位共有职工150名,其中高级职称45人,中级职称90人,初级职称15人.现采用分层抽样方法从中抽取容量为30的样本,则各职称人数分别为(  )
A.9,18,3B.10,15,5C.10,17,3D.9,16,5

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.某程序框图如图所示,若输入p=2,则输出的结果是(  )
A.2B.3C.4D.5

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.已知数列{an}的前n项和为Sn,且a1=1,an+1=Sn+1,其中n∈N*.则数列{an}的通项公式是an=2n-1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知函数f(x)=x2-(c+1)x+c(c∈R).
(1)解关于x的不等式f(x)<0;
(2)当c=1时,不等式f(x)>a-5在(0,2)上恒成立,求实数a的取值范图;
(3)设g(x)=f(x)-x2-(a-1)x,已知0<g(2)<1,3<g(3)<5.求g(4)-a的范图.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.已知在△ABC中,sinA与sinB的等差中项为$\frac{7}{10}$.等比中项为$\frac{2\sqrt{3}}{5}$,则sinC+sin(A-B)=$\frac{18}{25}$或$\frac{32}{25}$..

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.设数列{an}的前n项和为Sn,且(Sn-1)2=anSn(n∈N*
求S1、S2、S3的值,并求出Sn及数列{an}的通项公式.

查看答案和解析>>

同步练习册答案