精英家教网 > 高中数学 > 题目详情
17.某单位共有职工150名,其中高级职称45人,中级职称90人,初级职称15人.现采用分层抽样方法从中抽取容量为30的样本,则各职称人数分别为(  )
A.9,18,3B.10,15,5C.10,17,3D.9,16,5

分析 根据分层抽样的定义建立比例关系,即可求出各职称分别抽取的人数.

解答 解:用分层抽样方法抽取容量为30的样本,
则样本中的高级职称人数为30×$\frac{45}{150}$=9,
中级职称人数为30×$\frac{90}{150}$=18,
初级职称人数为30×$\frac{15}{150}$=3.
故选:A.

点评 本题主要考查分层抽样的应用,根据条件建立比例关系是解决本题的关键.比较基础.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

7.已知函数$f(x)=\left\{{\begin{array}{l}{3+{{log}_2}x,x>0}\\{2{x^2}-3x,x≤0}\end{array}}\right.$,则不等式f(x)≤5的解集为(  )
A.[-1,1]B.(-∞,-1]∪(0,1)C.[-1,4]D.(-∞,-1]∪[0,4]

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.如图,在多面体ABCDEF中,四边形ABCD是矩形,四边形ABEF为等腰梯形,且AB∥EF,AF=2,EF=2AB=4AD=4$\sqrt{2}$,平面ABCD⊥平面ABEF.
(1)求证:BE⊥DF;
(2)求二面角E-DF-A的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.在平面四边形ACBD(图①)中,△ABC与△ABD均为直角三角形且有公共斜边AB,设AB=2,∠BAD=30°,∠BAC=45°,将△ABC沿AB折起,构成如图②所示的三棱锥C′-ABC,且使$C'D=\sqrt{2}$.
(Ⅰ)求证:平面C′AB⊥平面DAB;
(Ⅱ)求二面角A-C′D-B的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.曲线y=e${\;}^{\frac{1}{3}x}$在点(6,e2)处的切线与坐标轴所围成的三角形的面积为(  )
A.$\frac{3}{2}{e}^{2}$B.3e2C.6e2D.9e2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.执行如图所示的程序框图,若输入x=1,则输出y的值是(  )
A.1B.3C.7D.15

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.某公司为了增加其商品的销售利润,调查了该商品投入的广告费用x与销售利润y的统计数据如表:
广告费用x(万元)2356
销售利润y(万元)57911
由表中数据,得线性回归方程l:$\widehat{y}$=$\widehat{b}$x+$\widehat{a}$($\widehat{b}$=$\frac{\sum_{i=1}^{n}({x}_{i}-\overline{x})({y}_{i}-\overline{y})}{\sum_{i=1}^{n}({x}_{i}-\overline{x})^{2}}$,$\widehat{a}$=$\overline{y}$-$\widehat{b}$x),则下列结论错误的是(  )
A.$\hat b>0$B.$\hat a>0$C.直线l过点(4,8)D.直线l过点(2,5)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.某人从2004年初向银行申请个人住房公积金贷款20万元用于购房,贷款的月利率为3.375%,并按复利计算,每月等额还贷一次,并从贷款后的次月开始归还,如果10年还清,那么每月应还贷多少元?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.如图,直三棱柱ABC-A1B1C1中,AB=AC=AA1=4,D为棱BB1上一点,B1D=1,E为线段AC上一点,AE=3.
(I)证明:BE∥平面AC1D;
(Ⅱ)若BE⊥AC,求四棱锥A-BCC1D的体积.

查看答案和解析>>

同步练习册答案