分析 (1)建立空间坐标系,求出BE,和DF的向量坐标,利用向量法极限证明即可;
(2)利用向量法求出平面的法向量,利用向量法进行求解即可.
解答
证明:(1)AF=2,EF=2AB=4AD=4$\sqrt{2}$,
∴EF=4$\sqrt{2}$,AB=2$\sqrt{2}$,AD=$\sqrt{2}$,
过A作AH⊥EF,
则HF=$\sqrt{2}$,AH=$\sqrt{2}$,
建立以A为坐标原点,AB,AH,AD分别为x,y,z轴的空间直角坐标系如图:
则A(0,0,0),B(2$\sqrt{2}$,0,0),H(0,$\sqrt{2}$,0),F(-$\sqrt{2}$,$\sqrt{2}$,0),D(0,0,$\sqrt{2}$),
E(3$\sqrt{2}$,$\sqrt{2}$,0),
则$\overrightarrow{BE}$=($\sqrt{2}$,$\sqrt{2}$,0),$\overrightarrow{DF}$=(-$\sqrt{2}$,$\sqrt{2}$,-$\sqrt{2}$),
则$\overrightarrow{BE}$•$\overrightarrow{DF}$=($\sqrt{2}$,$\sqrt{2}$,0)•(-$\sqrt{2}$,$\sqrt{2}$,-$\sqrt{2}$)=-2+2=0,
则BE⊥DF.
(2)设平面EDF的法向量为$\overrightarrow{m}$=(x,y,z),
$\overrightarrow{EF}$=(-4$\sqrt{2}$,0,0),$\overrightarrow{DF}$=(-$\sqrt{2}$,$\sqrt{2}$,-$\sqrt{2}$),
则由$\overrightarrow{m}$•$\overrightarrow{EF}$=0,$\overrightarrow{m}$•$\overrightarrow{DF}$=0,$\left\{\begin{array}{l}{-4\sqrt{2}x=0}\\{-\sqrt{2}x+\sqrt{2}y-\sqrt{2}z=0}\end{array}\right.$,即$\left\{\begin{array}{l}{x=0}\\{y=z}\end{array}\right.$
令z=1,则y=1,则$\overrightarrow{m}$=(0,1,1),
同理设平面DFA的法向量为$\overrightarrow{n}$=(x,y,z),
$\overrightarrow{AD}$=(0,0,$\sqrt{2}$),
则$\left\{\begin{array}{l}{\overrightarrow{n}•\overrightarrow{AD}=0}\\{\overrightarrow{n}•\overrightarrow{DF}=0}\end{array}\right.$,得$\left\{\begin{array}{l}{\sqrt{2}z=0}\\{-\sqrt{2}x+\sqrt{2}y-\sqrt{2}z=0}\end{array}\right.$,即$\left\{\begin{array}{l}{z=0}\\{y=x}\end{array}\right.$,
令x=1,则y=1,则$\overrightarrow{n}$=(1,1,0),
则cos<$\overrightarrow{m}$,$\overrightarrow{n}$>=$\frac{\overrightarrow{m}•\overrightarrow{n}}{|\overrightarrow{m}|•|\overrightarrow{n}|}$=$\frac{1}{\sqrt{2}×\sqrt{2}}=\frac{1}{2}$,
即<$\overrightarrow{m}$,$\overrightarrow{n}$>60°,
即二面角E-DF-A的大小为60°.
点评 本题主要考查直线垂直的判定以及二面角的求解,建立空间直角坐标系,利用向量法进行求解,综合性较强,运算量较大.
科目:高中数学 来源: 题型:选择题
| A. | ① | B. | ①② | C. | ②③ | D. | ③④ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 等差数列 | B. | 等比数列 | ||
| C. | 从第二项起为等差数列 | D. | 从第二项起为等比数列 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 9,18,3 | B. | 10,15,5 | C. | 10,17,3 | D. | 9,16,5 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com