精英家教网 > 高中数学 > 题目详情
13.${∫}_{-2}^{-1}$$\frac{2}{x}$dx=(  )
A.-ln2B.ln2C.-2ln2D.2ln2

分析 由${∫}_{-2}^{-1}$$\frac{2}{x}$dx=-${∫}_{1}^{2}$$\frac{2}{x}$dx,再根据定积分的计算法则计算即可.

解答 解:${∫}_{-2}^{-1}$$\frac{2}{x}$dx=-${∫}_{1}^{2}$$\frac{2}{x}$dx=-2lnx|${\;}_{1}^{2}$=-2ln2,
故选:C.

点评 本题考查了定积分的计算,关键是求出原函数,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

3.某洗衣机生产流水线上有三条不同的作业线,每条作业线上的质量指标分别为x,y,z,用综合指标S=x+y+z评价该洗衣机的等级.若S≥5,则该洗衣机为特等品;若4≤S≤5,则该洗衣机为一等品;若S<4,则该洗衣机不合格.现从这一批洗衣机中,随机抽取10台作为样本,其质量指标列表如下:
产品编号A1A2A3A4A5
质量指标(x,y,z)(1,1,2)(2,1,1)(2,2,2)(1,1,1)(1,2,1)
产品编号A6A7A8A9A10
质量指标(x,y,z)(1,2,2)(2,1,1)(2,2,1)(1,1,1)(2,1,2)
(1)利用上表提供的样本数据估计该批产品的一等品率;
(2)从编号为A1到A6的6台洗衣机中,随机抽取2台,
①用产品编号列出所有可能的结果;
②设事件B为“在取出的2台洗衣机中,恰有一台是一等品一台不合格”,求事件B发生的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.f(x)=$\left\{\begin{array}{l}{\frac{\sqrt{x+1}-1}{x},x≠0}\\{0,x=0}\end{array}\right.$,则x=0是(  )
A.可去间断点B.无穷间断点C.连续点D.跳跃间断点

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.设函数f(x)=$\left\{\begin{array}{l}{{e}^{x-1},x<1}\\{lo{g}_{2}x,x≥1}\end{array}\right.$,则使得f(x)≤1成立的x的取值范围是(-∞,2].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.如图,在多面体ABCDEF中,四边形ABCD是矩形,四边形ABEF为等腰梯形,且AB∥EF,AF=2,EF=2AB=4AD=4$\sqrt{2}$,平面ABCD⊥平面ABEF.
(1)求证:BE⊥DF;
(2)求二面角E-DF-A的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.如图是一个程序框图,则输出的S的值是63.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.在平面四边形ACBD(图①)中,△ABC与△ABD均为直角三角形且有公共斜边AB,设AB=2,∠BAD=30°,∠BAC=45°,将△ABC沿AB折起,构成如图②所示的三棱锥C′-ABC,且使$C'D=\sqrt{2}$.
(Ⅰ)求证:平面C′AB⊥平面DAB;
(Ⅱ)求二面角A-C′D-B的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.执行如图所示的程序框图,若输入x=1,则输出y的值是(  )
A.1B.3C.7D.15

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.某次考试无纸化阅卷的评分规则的程序如图所示,x1,x2,x3为三个评卷人对同一道题的独立评分,p为该题的最终得分,当x1=6,x2=9,p=8.5时,x3=(  )
A.11B.10C.8D.7

查看答案和解析>>

同步练习册答案