精英家教网 > 高中数学 > 题目详情
1.设函数f(x)=$\left\{\begin{array}{l}{{e}^{x-1},x<1}\\{lo{g}_{2}x,x≥1}\end{array}\right.$,则使得f(x)≤1成立的x的取值范围是(-∞,2].

分析 根据分段函数的表达式,对x进行分类讨论进行求解即可.

解答 解:若x≥1,由f(x)≤1得1得log2x)≤1,即0<x≤2,即1≤x≤2,
若x<1,则由f(x)≤1得ex-1≤1,即x-1≤0,得x≤1,此时x<1,
综上x≤2,
即不等式的解集为(-∞,2],
故答案为:(-∞,2]

点评 本题主要考查不等式的求解,根据分段函数的表达式,对x进行分类讨论是解决本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

11.如图,三棱柱ABC-A1B1C1中,侧棱AA1⊥平面ABC,AB1⊥平面A1CD,AC⊥BC,D为AB中点.
(Ⅰ)证明:CD⊥平面AA1B1B;
(Ⅱ)AA1=1,AC=2,求三棱锥C1-A1DC的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.若${(1-2x)}^{9}={a}_{9}{x}^{9}+{a}_{8}{x}^{8}…+{a}_{1}x+{a}_{0}$,则a1+a2+…+a9的值为-2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.设定值a∈(0,1),试求函数y=$\frac{a(cosx+a)}{2acosx+{a}^{2}+1}$的最大值与最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.长方体ABCD-A1B1C1D1满足底面ABCD是边长为10的正方形,AA1=20,若在长方体内部(包括各面)存在一点P,使得|PA|+|PB|=26,则四棱锥P-ABCD的体积的最大值为400.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知函数$f(x)=\left\{\begin{array}{l}ln(x+1),x>0\\ \frac{1}{2}x+1,x≤0\end{array}\right.$,若m<n,且f(m)=f(n),则n-m的取值范围是(  )
A.[3-2ln2,2)B.[3-2ln2,2]C.[e-1,2]D.[e-1,2)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.${∫}_{-2}^{-1}$$\frac{2}{x}$dx=(  )
A.-ln2B.ln2C.-2ln2D.2ln2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知sin($\frac{π}{5}-α$)=$\frac{1}{3}$,则cos(2$α+\frac{3π}{5}$)=(  )
A.-$\frac{7}{9}$B.-$\frac{1}{9}$C.$\frac{1}{9}$D.$\frac{7}{9}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知sinθ+cosθ=$\frac{2}{3}$,且0<θ<π,求sin2θ,cos2θ,tan2θ的值.

查看答案和解析>>

同步练习册答案