精英家教网 > 高中数学 > 题目详情
3.若函数f(x)=x3+2x2+x+a的零点成等差数列,则a=$\frac{2}{27}$.

分析 利用导数研究函数的单调性与极值,由于函数f(x)=x3+2x2+x+a的零点成等差数列,可得极大值与极小值满足的条件.

解答 解:f′(x)=3x2+4x+1=0,
令f′(x)=0,解得x=-1或-$\frac{1}{3}$.
可知:-1或-$\frac{1}{3}$分别是函数f(x)的极大值点与极小值点.
∵函数f(x)=x3+2x2+x+a的零点成等差数列,
∴$f(-\frac{1}{3})+f(-1)$=0,
∴$(-\frac{1}{3})^{3}$+2×$(-\frac{1}{3})^{2}$-$\frac{1}{3}$+a+(-1)3+2×(-1)2-1+a=0,
解得a=$\frac{2}{27}$.
故答案为:$\frac{2}{27}$.

点评 本题考查了等差数列的性质、利用导数研究函数的极值、函数的零点,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

13.如图,边长为2的正方形ABCD中.
(1)点E是AB的中点,点F是BC的中点,将△AED,△DCF分别沿DE,DF折起,使A,C两点重合于点A′.求证:A′D⊥EF.
 (2)当$BE=BF=\frac{1}{2}BC$时,求三棱锥A′-EFD体积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.给出下列四个结论:
①如果$\overrightarrow a•\overrightarrow b=\overrightarrow a•\overrightarrow c,且\overrightarrow a≠\overrightarrow 0$,那么$\overrightarrow b,\overrightarrow c$在$\overrightarrow a$方向上的投影相等
②已知平面α和互不相同的三条直线m、n、l,若l、m是异面直线,m∥α,l∥α、且n⊥l,n⊥m,则n⊥α;
③过平面α的一条斜线有一个平面与平面α垂直
④设回归直线方程为$\hat y=2-2.5x$,当变量x增加一个单位时,$\hat y$平均增加2个单位
其中正确结论的个数为  (  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.如图,网格纸上正方形小格的边长为1个单位长度,图中粗线曲出的是某几何体的三视图,则该几何体的表面积为(  )
A.16B.8$\sqrt{5}$C.32D.16$\sqrt{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知函数f(x)=$\left\{\begin{array}{l}{(\frac{1}{2})^{x},x<-1}\\{{x}^{2}+3x,x≥-1}\end{array}\right.$.
(Ⅰ)解不等式f(x)<4;
(Ⅱ)当x∈(0,2]时,f(x)≥mx-2(m∈R)恒成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.如图,在多面体ABCDEF中,四边形ABCD是矩形,四边形ABEF为等腰梯形,且AB∥EF,AF=2,EF=2AB=4AD=4$\sqrt{2}$,平面ABCD⊥平面ABEF.
(1)求证:BE⊥DF;
(2)求二面角E-DF-A的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.若变量x,y满足$\left\{\begin{array}{l}{x≥2}\\{y≥2}\\{x+y≤8}\end{array}\right.$z=$\frac{x}{a}$+$\frac{y}{b}$(a≥b>0)的最大值2,则a+3b的最小值为16.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.曲线y=e${\;}^{\frac{1}{3}x}$在点(6,e2)处的切线与坐标轴所围成的三角形的面积为(  )
A.$\frac{3}{2}{e}^{2}$B.3e2C.6e2D.9e2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.在△ABC中,角A,B,C的对边分别为a,b,c,已知$\sqrt{3}$(a-c)=b,A-C=$\frac{π}{3}$,则角B为$\frac{π}{3}$.

查看答案和解析>>

同步练习册答案