精英家教网 > 高中数学 > 题目详情
6.某人从2004年初向银行申请个人住房公积金贷款20万元用于购房,贷款的月利率为3.375%,并按复利计算,每月等额还贷一次,并从贷款后的次月开始归还,如果10年还清,那么每月应还贷多少元?

分析 设每月应还贷x元,付款次数为120次,根据条件建立等比数列的关系,利用数列求和建立方程关系进行求解即可.

解答 解:设每月应还贷x元,付款次数为120次,
则x[1+(1+3.375%)+(1+3.375%)2+…+(1+3.375%)119]=200000(1+3.375%)120
即$\frac{x[(1+3.375%)^{120}-1]}{(1+3.375%)-1}$=200000(1+3.375%)120
即x=$\frac{200000×3.375%×(1+3.375%)^{120}}{(1+3.375%)-1}$≈2029.66,
即如果10年还清,那么每月应还贷2029.66元.

点评 本题主要考查函数的应用问题,设出变量,结合等比数列的通项公式和求和公式进行计算是解决本题的关键.综合性较强.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

16.长方体ABCD-A1B1C1D1满足底面ABCD是边长为10的正方形,AA1=20,若在长方体内部(包括各面)存在一点P,使得|PA|+|PB|=26,则四棱锥P-ABCD的体积的最大值为400.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.某单位共有职工150名,其中高级职称45人,中级职称90人,初级职称15人.现采用分层抽样方法从中抽取容量为30的样本,则各职称人数分别为(  )
A.9,18,3B.10,15,5C.10,17,3D.9,16,5

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.已知数列{an}的前n项和为Sn,且a1=1,an+1=Sn+1,其中n∈N*.则数列{an}的通项公式是an=2n-1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知函数f(x)=x2-(c+1)x+c(c∈R).
(1)解关于x的不等式f(x)<0;
(2)当c=1时,不等式f(x)>a-5在(0,2)上恒成立,求实数a的取值范图;
(3)设g(x)=f(x)-x2-(a-1)x,已知0<g(2)<1,3<g(3)<5.求g(4)-a的范图.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知sinθ+cosθ=$\frac{2}{3}$,且0<θ<π,求sin2θ,cos2θ,tan2θ的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.已知在△ABC中,sinA与sinB的等差中项为$\frac{7}{10}$.等比中项为$\frac{2\sqrt{3}}{5}$,则sinC+sin(A-B)=$\frac{18}{25}$或$\frac{32}{25}$..

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.如图所示,四边形ABCD是腰长为2的等腰梯形,其上底长为2,下底长为4,E是腰BC上一点,P为上底CD上一点,且$\overrightarrow{BE}$=$λ\overrightarrow{BC}$,$\overrightarrow{DP}$=$λ\overrightarrow{DC}$,λ∈[0,1],则$\overrightarrow{AP}$•$\overrightarrow{AE}$的取值范围是[4,10].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.在锐角△ABC中,角A,B,C所对的边分别为a,b,c,已知a=bcosC+$\frac{\sqrt{3}}{3}$csinB.
(1)若a=2,b=$\sqrt{7}$,求c;
(2)若$\sqrt{3}$sin(2A-$\frac{π}{6}$)-2sin2(C-$\frac{π}{12}$)=0,求A.

查看答案和解析>>

同步练习册答案