精英家教网 > 高中数学 > 题目详情
9.若函数f(x)=$\frac{1}{2}$x2+2x-3lnx+4a的极小值为-$\frac{3}{2}$,则a的值为(  )
A.-2B.-1C.-4D.-3

分析 求出函数的导数,解关于导函数的不等式,求出函数的单调区间,从而求出函数的极小值,求出a的值即可.

解答 解:函数的定义域为:x>0;f′(x)=x+2-$\frac{3}{x}$,
令f′(x)>0,解得:1<x,
令f′(x)<0,解得:0<x<1,
故f(x)在(0,1)递减,在(1,+∞)递增,
∴f(x)极小值=f(1)=$\frac{1}{2}+2+4a$=$-\frac{3}{2}$,解得:a=-1,
故选:B.

点评 本题考查了函数的单调性问题,考查导数的应用,是一道中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

19.直线$\left\{\begin{array}{l}x=1+tcosα\\ y=-2+tsinα\end{array}$(t为参数,0≤a<π)必过点(  )
A.(1,-2)B.(-1,2)C.(-2,1)D.(2,-1)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知在△ABC中,b2+a2-c2<0,且b>a,sinA+$\sqrt{2}$cosA=$\frac{5}{3}$,则tanA=(  )
A.$\frac{2\sqrt{2}}{3}$或$\frac{4\sqrt{2}}{9}$B.$\frac{\sqrt{2}}{4}$C.$\frac{7\sqrt{2}}{8}$D.$\frac{\sqrt{2}}{4}$或$\frac{7\sqrt{2}}{8}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知等差数列{an}满足a2=3,a4+a7=20.
(Ⅰ)求数列{an}的通项an及前n项和为Sn
(Ⅱ)在(Ⅰ)的条件下,证明:$\sum_{k=1}^{n}$$\frac{1}{{S}_{K}}$<$\frac{5}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.A${\;}_{5}^{2}$-C${\;}_{5}^{3}$等于(  )
A.0B.-10C.10D.-40

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.将原油精炼为汽油、柴油、塑胶等各种不同的产品,需要对原油进行冷却和加热,若在第xh时,原油的温度(单位:℃)为f(x)=x2-7x+15(0≤x≤8),则在第1h时,原油温度的瞬时变化率为-5℃/h.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知函数f(x)=Asin(ωx+φ)(A>0,ω>0,0<φ<$\frac{π}{2}$)的 部分图象如图所示,f($\frac{π}{2}$)=-$\frac{2}{3}$,则f($\frac{π}{3}$)等于(  )
A.-$\frac{2}{3}$B.-$\frac{1}{2}$C.-$\frac{\sqrt{2}}{4}$D.$\frac{1}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知边长为2的菱形ABCD中,∠BCD=60°,E为DC的中点,如图1所示,将△BCE沿BE折起到△BPE的位置,且平面BPE⊥平面ABED,如图2所示.
(Ⅰ)求证:△PAB为直角三角形;
(Ⅱ)求二面角A-PD-E的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知函数$f(x)={e^x}-ax-1-\frac{x^2}{2},x∈R$.
(1)若a=1,求函数f(x)的单调区间;
(2)若对任意x≥0都有f(x)≥0恒成立,求实数a的取值范围.

查看答案和解析>>

同步练习册答案