分析 运用等差数列的求和公式和等差中项,可得a6=$\frac{2π}{3}$,由等比数列的性质可得b6=±$\frac{π}{2}$,再由特殊角的三角函数,即可得到结论.
解答 解:由{an}为等差数列,S11=$\frac{22π}{3}$π,
则$\frac{1}{2}$(a1+a11)×11=$\frac{22π}{3}$,
即为11a6=$\frac{22π}{3}$,a6=$\frac{2π}{3}$,
又{bn}为等比数列,b5•b7=$\frac{{π}^{2}}{4}$,
即有b62=$\frac{{π}^{2}}{4}$,
即b6=±$\frac{π}{2}$,
则tan(a6+b6)=tan($\frac{2π}{3}$+$\frac{π}{2}$)=tan$\frac{7π}{6}$=$\frac{\sqrt{3}}{3}$.
或tan(a6+b6)=tan($\frac{2π}{3}$-$\frac{π}{2}$)=tan$\frac{π}{6}$=$\frac{\sqrt{3}}{3}$.
故答案为:$\frac{\sqrt{3}}{3}$.
点评 本题考查等差数列和等比数列的性质和求和公式,考查三角函数的求值,属于中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 3 | B. | 2 | C. | 1 | D. | 0 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (0,1) | B. | [$\frac{1}{16}$,1) | C. | (1,+∞) | D. | (0,$\frac{1}{16}$] |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com