精英家教网 > 高中数学 > 题目详情
已知等比数列的公比为的前项和.
(1)若,求的值;
(2)若有无最值?并说明理由;
(3)设,若首项都是正整数,满足不等式:,且对于任意正整数成立,问:这样的数列有几个?
(1);(2)有最大值为,最小值为;(3)个. 

试题分析:(1)根据等比数列前项和公式,可见要对分类讨论,当时,,从而不难求出;当时,,即可利用根据定义求出;(2)根据题意可求出数列的前项和,要求出的最值,可见要分两种情况进行讨论,当时利用单调性即可求出的最值情况,当时,由于将随着的奇偶性正负相间,故又要再次以的奇偶数进行讨论,再利用各自的单调性即可求出的最值; (3)首先由含有的绝对值不等式可求出的范围,再用表示出,由单调性不难求出的最小值,即,故并分别代入进行,依据就可求出的范围,最后结合是正整数,从而确定出的个数.
试题解析:(1)当时,                     2分
时,               4分
所以(可以写成
(2)若,则
时,,所以的增大而增大,
,此时有最小值为1,但无最大值.         6分
时,
时,,所以的增大而增大,
是偶数时,,即:;       8分
时,
即:,所以的增大而减小,
是奇数时,,即:
由①②得:有最大值为,最小值为.        10分
(3)由,所以,                  11分
随着的增大而增大,故
即:,得.                   13分
时,

,得共有个;                       15分
时,
 
,得共有个;                       17分
由此得:共有个.                               18分
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

设正项数列an为等比数列,它的前n项和为Sn,a1=1,且.
(Ⅰ)求数列的通项公式;
(Ⅱ)已知是首项为1,公差为2的等差数列,求数列的前n项和Tn

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知单调递增的等比数列满足:,且的等差中项.
(1)求数列的通项公式;
(2)设,求数列的前项和.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知等差数列中,的等比中项.
(I)求数列的通项公式:
(II)若.求数列的前项和.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知正项等比数列{an}满足:a3a2+2a1,若存在两项aman使得 =4a1,则的最小值为 (  ).
A.B.C.D.不存在

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知正项等比数列满足:,若存在两项使得,则的最小值为               ;

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

若数列满足:,则前6项的和         .(用数字作答)

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

,且,则      .

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

等比数列中,,公比q满足,若,则m=       .

查看答案和解析>>

同步练习册答案