精英家教网 > 高中数学 > 题目详情
19.已知a=$\sqrt{3}+\sqrt{2}$,b=$\sqrt{3}-\sqrt{2}$,则a,b的等差中项为$\sqrt{3}$.

分析 由已知直接结合等差中项的概念得答案.

解答 解:∵a=$\sqrt{3}+\sqrt{2}$,b=$\sqrt{3}-\sqrt{2}$,
∴由等差中项的概念得:a,b的等差中项为$\frac{\sqrt{3}+\sqrt{2}+\sqrt{3}-\sqrt{2}}{2}=\sqrt{3}$.
故答案为:$\sqrt{3}$.

点评 本题考查等差中项的概念,是基础的计算题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

9.已知函数f(x)=ax2+xlnx-1,a∈R,其中e是自然对数的底数.
(1)当a=0时,求函数f(x)的极值;
(2)若f(x)在区间[1,5]上为单调函数,求a的取值范围;
(3)当a=-e时,试判断方程|f(x)+1|=lnx+$\frac{3}{2}$x是否有实数解,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知函数f(x)=ln(x+a)-x2-x在x=0处取得极值.
(1)求实数a的值;
(2)若关于x的方程,f(x)=-$\frac{5}{2}$x+b在区间[0,2]上恰有两个不同的实数根,求实数b的取值范围;
(3)证明:对任意的正整数n,不等式ln$\frac{n+2}{2}$<$\frac{1}{1}$+$\frac{1}{2}$+…+$\frac{1}{n}$都成立.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知甲、乙两组数据如茎叶图所示,它们的中位数相同,平均数也相同.
(1)求m,n的值;
(2)若从甲、乙两组数据中随机各抽取一个数据,求乙的数据大于甲的数据的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.若a>-1,则$\frac{{a}^{2}+3a+3}{a+1}$的最小值是(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.设x,y∈R且满足$\left\{\begin{array}{l}{x≥1}\\{x+y-6≤0}\\{y≥x}\end{array}\right.$,则z=x+2y的最小值等于(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.某中学一名数学老师对全班50名学生某次考试成绩分男女生进行统计(满分150分),其中120分(含120分)以上为优秀,绘制了如图所示的两个频率分布直方图:
(1)根据以上两个直方图完成下面的2×2列联表:
成绩性别优秀不优秀总计
男生131023
女生72027
总计203050
(2)根据(1)中表格的数据计算,你有多大把握认为学生的数学成绩与性别之间有关系?
k02.0722.7063.8415.0246.6357.87910.828
P(K2≥k00.150.100.050.0250.0100.0050.001
附:K2=$\frac{n(ab-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.已知直线l经过点(1,3),且与圆x2+y2=1相切,直线l的方程为x=1或4x-3y+5=0.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.等差数列{an}的前n项和为Sn,a1<0,S9=S12,则当Sn取最小值时,n等于(  )
A.10B.11C.9或10D.10或11

查看答案和解析>>

同步练习册答案