精英家教网 > 高中数学 > 题目详情

(本小题满分12分)已知函数的奇函数,且单调递减,解关于的不等式,其中.

解:因为上的奇函数,
所以可化为.
单调递减,且,所以,即.    ……………….4分
①当时,,而,所以;……………………………6分
②当时,,解得;…………………..8分
③当时,,而,所以.  ……………………………….10分
综上,当时,不等式无解;当时,不等式的解集为.      ………………………………………………12分

解析

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

(本小题满分12分)已知定义域为R的函数是奇函数.
(Ⅰ)求a的值,并指出函数的单调性(不必说明单调性理由);
(Ⅱ)若对任意的,不等式恒成立,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本题满分12分)已知函数.
(1)若对任意恒成立,求实数的取值范围;
(2)若函数的图像与直线有且仅有三个公共点,且公共点的横坐标的最大值为,求证:.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本题满分12分)
已知函数(m为常数,且m>0)有极大值9.
(1)求m的值;
(2)若斜率为-5的直线是曲线的切线,求此直线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数=ax2+(b-8)x-a-ab , 当x(-∞,-3)(2,+∞)时, <0,当x(-3,2)时>0 .
(1)求在[0,1]内的值域.
(2)若ax2+bx+c≤0的解集为R,求实数c的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题



(1)求解析式并判断的奇偶性;
(2)对于(1)中的函数,若时都有成立,求满足条件的实数m的取值范围。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)
已知定义在区间上的函数为奇函数且
(1)求实数m,n的值;
(2)求证:函数上是增函数。
(3)若恒成立,求t的最小值。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知9x-10·3x+9≤0,求函数y=x-1-4x+2的最大值和最小值

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)
已知函数在其定义域上满足
(1)函数的图象是否是中心对称图形?若是,请指出其对称中心(不证明);
(2)当时,求x的取值范围;
(3)若,数列满足,那么:
①若,正整数N满足时,对所有适合上述条件的数列恒成立,求最小的N
②若,求证:

查看答案和解析>>

同步练习册答案