精英家教网 > 高中数学 > 题目详情

已知函数f(x)=a|x|+ (a>0,a≠1)

(1)若a>1,且关于x的方程f(x)=m有两个不同的正数解,求实数m的取值范围;

(2)设函数g(x)= f( x),x∈[ 2,+∞),满足如下性质:若存在最大(小)值,则最大(小)值与a无关.试求a的取值范围.

 

【答案】

(1)实数的取值范围为区间;(2)实数a的取值范围是.

【解析】

试题分析:(1)令,换元将问题转化为关于的方程有相异的且均大于1的两根,利用二次函数的性质解答即可;(2)算得,分类讨论①当,②当,再分讨论解答.

试题解析:(1)令,因为,所以,所以关于的方程有两个不同的正数解等价于关于的方程有相异的且均大于1的两根,即关于的方程有相异的且均大于1的两根,                2分

所以,                         4分

解得,故实数的取值范围为区间.           6分

(2)

①当时,

a)时,,所以

b)时,,所以   8分

ⅰ)当时,对,所以 上递增,

所以 ,综合a) b)有最小值为与a有关,不符合 10分

ⅱ)当时,由,且当时,,当时,,所以 上递减,在上递增,所以,综合a) b) 有最小值为与a无关,符合要求.   12分

②当时,

a) 时,,所以

b) 时,

所以  上递减,

所以 ,综合a) b) 有最大值为与a有关,不符合  15分

综上所述,实数a的取值范围是.                  16分

考点:二次函数、利用导数求函数单调区间、利用导数求函数最值、分类讨论思想.

 

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=a-
12x+1

(1)求证:不论a为何实数f(x)总是为增函数;
(2)确定a的值,使f(x)为奇函数;
(3)当f(x)为奇函数时,求f(x)的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)
a-x  ,x≤0
1  ,0<x≤3
(x-5)2-a,x>3
(a>0且a≠1)图象经过点Q(8,6).
(1)求a的值,并在直线坐标系中画出函数f(x)的大致图象;
(2)求函数f(t)-9的零点;
(3)设q(t)=f(t+1)-f(t)(t∈R),求函数q(t)的单调递增区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=a-
1
2x+1
,若f(x)为奇函数,则a=(  )
A、
1
2
B、2
C、
1
3
D、3

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
a(x-1)x2
,其中a>0.
(I)求函数f(x)的单调区间;
(II)若直线x-y-1=0是曲线y=f(x)的切线,求实数a的值;
(III)设g(x)=xlnx-x2f(x),求g(x)在区间[1,e]上的最小值.(其中e为自然对数的底数)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=a-
12x-1
,(a∈R)
(1)求f(x)的定义域;
(2)若f(x)为奇函数,求a的值;
(3)考察f(x)在定义域上单调性的情况,并证明你的结论.

查看答案和解析>>

同步练习册答案